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Abstract

Many fingers wrinkle or shrivel when immersed in wa-
ter. When used for biometric identification, the recognition
rate for wrinkled fingers degrades. The impact of wrin-
kling has so far not been well-understood. In this study,
we present an investigation of how the finger-skin expan-
sion due to wrinkling impacts the quality of scanned finger-
prints and characterize the qualitative changes that affect
recognition. We also introduce the Wet and Wrinkled Fin-
ger (WWF) database that we will make available to other
researchers. In this database of 300 fingers, 185 are vis-
ibly wrinkled after immersion; multiple images of dry and
immersed fingerprints were acquired.

In this paper, we present baseline recognition rates on
WWF using two algorithms — a commercial fingerprint
recognition algorithm and the publicly available Bozorth3
matcher. Specifically, we show a degradation in accuracy
with both algorithms when comparing Dry-finger to Dry-
finger verification with Dry-finger to Wet-finger verification.
We analyze performance on a per-finger basis and note a
difference in accuracy amongst fingers, and as consequence
make recommendations about which fingers to use in envi-
ronments where fingers are apt to be wet. Additionally, we
propose an implementation of a classifier that can decide if
the incoming query is wrinkled.

1. Introduction

Fingerprint recognition is a well analyzed problem with
many successful methods having an equal error rate (EER)
that is less than 5% even on challenging datasets like those
used in the Fingerprint Verification Competition (FVC)
2002, 2004 and 2006 [11][4] which includes non-ideal or
perturbed prints. Performing well in challenging condi-
tions without compromising the performance from ideal dry
conditions is vital for a biometric system to operate in un-
controlled operating conditions. One of the domains that
has only been lightly explored is fingerprint recognition in
the maritime domain where in which hands may be sub-

Figure 1: An image acquired with a Lumidigm sensor of
a wrinkled finger after soaking in water; the finger is not
pressed on the platen and is in the air a short distance from
the platen.

ject to prolonged exposure to water, and fingertips become
wrinkled or shriveled. Applications include access control,
forensics, and security. Fakourfar et al.[8] had shown a
degradation in the performance on a small number of sub-
jects on a particular commercial matching algorithm. In this
paper, we try to make a more detailed analysis of the prob-
lem of recognition on wrinkled fingertips and propose pos-
sible directions to take it forward.

Even the process of wrinking is not fully understood,
though there are a few theories on the origin of wrinkles,
and [19] surveys them concisely. Some claim that wrin-
kling occurs due to expansion on the outer layer of the skin
(Stratum Corneum)[2] or contraction of myo-epithelial cells
in the absence of sebaceous glands in glabrous skin [15].
Recent studies [18][17] have suggested that vasoconstric-
tion may be the cause as it decreases the turgor (finger pulp
pressure) and effectively shrinks the volume to produce skin
wrinkles. See Figure 1 for an image of highly wrinkled fin-
ger in air. There are a number of challenges in performing
recognition of waterlogged fingers. First, widely used sen-



sors based on capacitive imaging or based on frustrated to-
tal internal reflectance (FTIR) are unreliable without drying
when the fingers are wet or very damp. Even after dry-
ing the physical changes persist for 10-15 minutes. So, an
appropriate sensor, such as a multispectral sensor, must be
used. Along with visible large scale wrinkling, there is a
non-isometric deformation to the surface of the skin. That
is, there may be expansion of the surface in some loca-
tions and contraction in others and as a consequence, the
distances between fingerprint features such as minutiae and
corepoints may change. When a wet fingerprint is imaged
in air, the surface topography has changed with wrinkling.
One hope is that when a wrinkled fingerprint is pressed onto
a sensor’s platten, the fingerprint would flatten and effec-
tively restore the geometry. Unfortunately, there is a differ-
ent distribution of feature locations when a wet fingerprint is
pressed on the platen than a dry one. This can be viewed as
an aggravation of the plastic or elastic distortion that occurs
when the finger is pressed on a sensor platen [5],[14]. We
do not tackle the problem where the finger is moist from
sweat as this mostly affects image quality with FTIR and
capacitive sensors. This situation might be a concern for
Level 3 features which include pores that are imaged with
high resolution (1000 dpi) sensors[9].

Because there are no publicly available datasets of wrin-
kled, waterlogged fingerprints and because the only prior
study had very few prints [8], we acquired our own dataset.
In this paper we introduce the Wet and Wrinkled Fin-
ger (WWF) database to examine the phenomenon of wrin-
kling, and we will make this database available to other re-
searchers upon publication. In this paper, we present qual-
itative observations and a quantitative evaluation to form a
baseline for future work. To our knowledge, such a database
of fingerprints does not exist. We use a commercial al-
gorithm and the publicly available Bozorth3 algorithm for
minutiae point extraction, matching and scoring. Since we
do not envision scenarios where users would be enrolled
with wet fingers, we concentrate on comparisons where one
of the fingerprints is dry. As a baseline, we consider per-
formance when both fingerprints are dry and compare this
to situations where one fingerprint is dry and one is wet.
Because we segregate the most wrinkled prints and use
only them for experiments, wet and wrinkled are used in-
terchangeably. Our aim is to improve existing techniques in
fingerprint recognition by using a model that is aware that
the wrinkles are present in a particular finger.

2. Related Work

Fakourfar et al.[8] studied the performance of the fin-
gerprint recognition systems with wet fingerprints. Their
database was constructed by soaking the right hand in a
glove filled with cold water for about 30 minutes. This pro-
cess does not guarantee the appearance of wrinkles, either

because the person cannot wrinkle despite long exposure
or because 30 minutes was insufficient for skin expansion
to set in. On communication with the authors, we learned
that the subjects soaked for a fixed amount of time, and the
amount of wrinkling was not documented. So, their evalu-
ation included mildly wrinkled fingers as well as wrinkled
fingers. In the WWF database, we promote wrinkling by
maintaining a warm water bath using a heating system and
fixing the pH to 8.1 by using baking soda. These are opti-
mal conditions for diffusion of water into the outer layer of
the skin. And, if in spite of these measures, the finger fails
to wrinkle, we have annotated the dataset to allow selec-
tion of images exhibiting high degrees of wrinkling before
performance testing.

There has been work in the field of medicine to use wrin-
kling of finger tips as a screening test for normal nerve func-
tion [3, 1, 17]. They discuss various conditions to promote
wrinkling. We used these observations to obtain excellent
conditions for inducing fingertip wrinkling in order to col-
lect the WWF Database as discussed in Section 3.

Yin et al. [19] present a mechanical model of wrinkling
including factors like wrinkle-to-wrinkle distance (wave-
length), wrinkle depth and critical wrinkling stress/strain
with varying geometry and material parameters. This gives
valuable insight into the physiology of wrinkling of a finger
by characterizing the wrinkling using analytical equations
over the above factors. This work is a sample of the body of
work that represents how thin sheets could be used to model
wrinkles in human skin, textiles and for example an apple’s
skin.

Ross et al. [12] have given a deformable thin plate spline
based model to estimate a measure called the average defor-
mation. This average deformation is used to pre-distort the
minutiae points in the template image. If wrinkling artifacts
are viewed as an extended form of this nonlinear change,
they can be similarly modeled. However, this is possible
only when template fingerprints are also wet fingerprints so
that the average deformation can be estimated. In relation
to the deformation modeling, Cappelli et al.[5] considered
the slipping force applied after touching the sensor that is
non-orthogonal and were able to model the distortion in the
minutiae distribution. They model it as three regions that
have different properties. One challenge for the model is
the automatic derivation of the model parameters.

3. The WWF Database

To study the effect of immersion in water and wrinkling
of fingerprints, we constructed the Wet and Wrinkled Fin-
ger (WWF) database. We collected data from 30 people
for all ten fingers using a multispectral fingerprint scanner
from Lumidigm (Venus series). We treat 300 fingers as sep-
arate identities. Multispectral sensors are effective for our
application because they are designed to function when the



fingers are wet with dripping water, and they can acquire
an image when the finger is not in contact with the platen.
This is possible because the multispectral sensor is able to
acquire subsurface features as well as surface feature even
under poor conditions; this contrasts with frustrated total
Internal reflection sensors that require sufficient moisture
along the ridges, air gaps in the valleys, and a clean dry
platen [13].

For each finger, the database contains two types of im-
ages: a pressed image and an air image. A pressed im-
age is a regular scan of a finger that is pressed against the
platen. The air image is an image of a fingertip that is not
pressed on the sensor platen and lies just above it. The sen-
sor produces a grayscale composite image from the mul-
tispectral signal, a raw RGB image to visually inspect the
fingerprint, and a quality image. In total there were 3600
acquisitions because each of the 300 fingers has four modes
(Dry-Air, Dry-Pressed, Wet-Air and Wet-Pressed) and each
of the four modes has 3 repetitions for samples. Inspection
of 300 air images revealed wrinkling in 185 images, and the
corresponding fingers have been labeled as having exhibited
wrinkling. The database will be available for researchers to
download at http://vision.ucsd.edu/WWF.

To stimulate finger wrinkling, we soaked both hands of
thirty subjects for 30 minutes in warm water maintained
at 40 °C and at a basic pH of 8.1 as this promotes wrin-
kling [19]. Using the Lumidigm sensor, we captured three
sets of images — a binary fingerprint image and a raw RGB
image before and after soaking. The stored RGB bitmap
images is 352 x 544 pixels. Rather than acquiring three
successive images of each finger, we acquired all fingers
and repeated this three times.

To offset the disadvantage of having a limited number of
subjects we captured fingerprints from all ten fingers. The
experiments in the subsequent sections have treated each
finger as a separate identity to be recognized. While there
may be correlations amongst fingers coming from the same
hand as found for twins [10], this is acceptable because the
objective for us is to prove the degradation in match scores
when we perform the same experiments for two different
conditions, Dry and Wet.

After acquisition we subjectively labeled each image as
being of a wrinkled finger or a non-wrinkled finger. 185
fingers out of the 300 fingers are visibly wrinkled. We have
also observed that about 10 out of the 30 people do not wrin-
kle enough in spite of soaking the hand in water for an hour.
There are also a couple of instances of damaged skin be-
cause of heavy work.

4. Evaluating Accuracy for Wet and Dry Fin-
gerprints

To assess the impact of immersion and wrinkling on fin-
gerprint recognition, we used two systems, a commercially

and a publicly available system. Each of these systems has
two stages: minutia detection and matching/scoring. Of the
300 fingers in the database, 185 exhibited visible wrinkling
in the air images, and we used these 185 images in the ex-
periments reported in this section.

The publicly available, open source system is the Na-
tional Institute of Standards and Technology (NIST) Bio-
metric Image Software (NBIS) release 3.1.1, and we use
the minutiae detector (called MINDTCT) and the matcher
(called Bozorth3) [16]. Because of agreements with the
vendor, we cannot reveal the name of the commercial de-
tector.

The Bozorth3 algorithm [16] uses a rotation- and
translation-invariant matching method. The essence of the
approach involves building a list of pairs of minutiae from
an image. Each pair is described by the distance between
the minutiae and the two angles between the line segment
formed by the two minutiae and the minutae’s orientation
returned by the detector. Pairs of line segments between the
probe and gallery images are considered compatible if the
difference of distances is within a threshold and if the ori-
entation difference are also within a limit. Compatible line
segment pairs are stored in the list. The method uses pairs
of minutiae instead of individual minutia points in order to
construct translation and rotation invariants. Bozorth3 then
traverses the list and clusters all linked pairs. The length of
the longest chain is the score. The notion of linking of two
line-segments seems to be close to the method of maximum
matched pair support (MPS) [7] although a graph-based ter-
minology is used.

We evaluate the impact of immersion in a verification
task in which a system is given two fingerprints and must
decide if they are from the same or different fingers. The
performance is judged by genuine and impostor scores.
Genuine scores indicate the level of agreement between dif-
ferent samples of the same finger. Impostor scores are ob-
tained by matching samples from different fingers. In the
following analysis, all possible genuine scores for the 185
fingers are computed. Because there are so many poten-
tial impostor pairs, we randomly sampled the impostor set.
The Receiver Operating Characteristic (ROC) curve is pre-
sented, and the Equal Error Rate (EER) is provided.

4.1. Commercial Algorithm Performance

Figure 2 shows histograms of match scores for the com-
mercial algorithm; Figure 2a shows the case where both the
gallery and probe are dry whereas Fig. 2b shows the case
where the gallery is dry and the probe is wet. Notice that
the overlap region, where there is potential for error depend-
ing upon match threshold, is larger for the wet fingerprints.
This is born out in the ROC curve shown in Figure 3. The
equal error rates (EER) are respectively 2.29% and 4.12%,
nearly a doubling of the error rate for wrinkled fingerprints.
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Figure 2: Histogram plot of match scores with the Commer-
cial Algorithm for both minutiae and matching. Notice the
greater overlap and shifted mean in the case of fig 2b.

4.2. NIST NBIS Algorithm Performance

Figure 4 shows histograms of match scores when the
MINDTCT and Bozorth3 algorithms are used; Figure 4a
shows the case where both the gallery and probe are dry
whereas Fig. 4b shows the case where the gallery is dry
and the probe is wet. The ROC curve provided in Fig-
ure 5 reinforces the observation about confusion in wet fin-
ger matches. The EER are respectively 2.29% and 3.23%
showing the NBIS performs better on the wet fingerprints
than the commercial system, but there remains a marked
decrease in performance for wrinkled fingers.
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Figure 3: ROC curves — Commercial algorithm for minutiae
detection & matching.

5. Physical effects on the fingers

In the previous sections, we have seen that wet/wrinkled
fingerprints yield lower recognition rates than dry ones.
While the presence of wrinkles is a visible phenomena in
these images, are the wrinkles themselves the cause of the
degradation in pressed images, or are there other physical
effects at play? In this section, we consider some of the
effects that might be leading to decreased performance in
pressed images and present qualitative observations from
this study.

The change in fingerprints when they are immersed is
driven by skin expansion. On analyzing air images such as
the one shown in Figure 1, we found that the presence of
wrinkles post-soaking correlates with certain effects in the
pressed fingerprint. These effects do not occur for every wet
fingerprint, but they occur often enough to be noteworthy.

1. Clumping of skin causes u-shaped artifacts — Figure
6 shows this effect in which clumping leads to a spuri-
ous light U-shaped curve in the image that is transver-
sal to the fingerprint ridge. In turn, this leads to spu-
rious minutiae. In our analysis, the commercial algo-
rithm was fairly robust when these clumping do not
occur near a core or delta point.

2. Cuts already present become more prominent. —
Figure 7 presents air images of a wet and dry finger
with small surface cuts, and the cuts are more promi-
nent in the wet image. These lead to spurious minu-
tiae which may lead to lower scores depending on the
matching method used.

3. Thickening of ridges — The ridges become thicker and
the label of the minutae type (bifurcation vs ending) re-
turned by the minutiae detector might change. Some-
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Figure 4: Histogram plot of match scores with NIST NBIS
system (MINDTCT and Bozorth3). Notice the greater over-
lap in the case of fig 4b.

times, there is a significant shift in the location of the
minutiae.

4. Moving apart of minutiae — The non-linear distortion
of the skin is due to the surface profile change and sub-
sequent pressing on the platen. This leads to regions of
the print where the minutae move closer together while
in other regions the minutiae move further apart.

6. Fingers to use

We have found that the error rate varies by finger, and
this leads to a natural question. Which finger is most af-
fected by wet conditions and which one is least affected?
To answer this we looked at ROC performance on a finger-
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Figure 5: ROC curves for the NIST NBIS system.

(a) Dry (b) Wet

Figure 6: Skin gets clumped in certain places and may lead
to misfiring of the minutiae detector. Here, we see an ex-
ample of a u-shaped curve, which is the downward sloping
white curve in the circled region of the Wet image.

(b) Wet

(a) Dry

Figure 7: Cuts already present become more prominent on
soaking and expansion

by-finger basis. 300 fingers irrespective of highly wrinkled
or not are tested on Mindtct (minutiae detection) and the



Table 1: EERs of Dry-Dry match and Dry-Wet match for
each of the fingers. The error rate is given in percentage.

Dry-Dry Match | Dry-Wet Match

Thumb | 1.27 0.84
Fore 0.12 2.65
Middle | 1.06 2.72
Ring 1.64 3.3

Little 3.49 4.69

Bozorth3 (matching), both available from NIST. This lets
us conclude, on the whole, which finger may be beneficial
in terms of performance w.r.t ROCs. For each of the fin-
gers, the impostor scores are subsampled to select around
3500 scores for both Dry-Dry match and Dry-Wet match.
The number of genuine scores are 180 and 540 for Dry-Dry
and Dry-Wet respectively.

The Dry-Wet EER degrades from the Dry-Dry EER for
all fingers except the thumb where the rate is slightly higher
as shown in Table 1. Ring finger and little finger have the
highest error rates in wet condition. This supports the con-
clusion, consistent with [8] that the ring finger is among the
bad choices. It also shows the thumb to be the best choice.
The ROC curves are shown in Figure 8. Apart from the
finger-wise ROC analysis, we investigated the shift in gen-
uine matchscores for every finger that was enrolled after it
got wet i.e. Shift = Dry-Dry score — Dry-Wet score. On
average, all shifts were positive and indicated a reduction
in match scores when fingers got wet. We found that the
average reduction in scores for ring finger and fore finger
(commonly used in recognition) was higher than for other
fingers and thumb was relatively better than the others.

7. Future work - Handling wrinkles

Future work should include the following two directions.
The first is to simply to determine when a fingerprint is
excessively wrinkled and potentially not report an answer.
In essence, this would serve as part of a fingerprint image
quality measure. The second would be to actually improve
recognition accuracy when fingerprints are wrinkled.

To address the first challenge, we have done some
promising experiments for classifying wrinkled versus non-
wrinkled fingerprints. We took as input the raw RGB
airimages rather than the pressed images and made a deci-
sion using a linear SVM [6]. The feature vector consists of
the standard deviation of 10 subbands (3-level decomposi-
tion) of discrete wavelet transformed image (Haar wavelet).
This method attempts to capture the essential difference
between wrinkled and unwrinkled air images through a
wavelet representation. The frequencies present in wrin-
kled fingers are different because of the low-frequency folds
on top of the high frequency ridge-valley patterns. The air

images of the highly wrinkled fingers are used for positive
(wet) and negative (dry) training samples. A separate set
is used for evaluation of the classifier. In total, the 555 im-
ages each of wrinkled and unwrinkled air images were used.
When tested, this simple classifier was accurate 84.25% of
the time.

8. Conclusion

In this paper, we consider the challenge of recognizing
fingerprints that have become so wet as to have wrinkled.
We have introduced a new database, the Wet and Wrinkled
Fingerprint (WWF) database, and this database has been
used in subsequent performance analysis of existing finger-
print software systems. We found an increase in verification
error rates for both the commercial algorithm and publicly
available NIST NBIS algorithm when a gallery image is dry
and a probe image is wet. We also found that the effect of
wrinkling depends on the finger; wrinkling of the thumb
seems to affect recognition less than the other fingers with
respect to ROC performance and in terms of shift in his-
togram scores. We have put forth possible approaches to
take this problem forward and make biometric technology
more robust in less constrained settings.
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