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Abstract

We present a theory that addresses the problem of deter-
mining shape from the (small or differential) motion of an
object with unknown isotropic reflectance, under arbitrary
unknown distant illumination, for both orthographic and perp-
sective projection. Our theory imposes fundamental limits
on the hardness of surface reconstruction, independent of the
method involved. Under orthographic projection, we prove
that three differential motions suffice to yield an invariant
that relates shape to image derivatives, regardless of BRDF
and illumination. Under perspective projection, we show that
four differential motions suffice to yield depth and a linear
constraint on the surface gradient, with unknown BRDF and
lighting. Further, we delineate the topological classes up to
which reconstruction may be achieved using the invariants.
Finally, we derive a general stratification that relates hard-
ness of shape recovery to scene complexity. Qualitatively, our
invariants are homogeneous partial differential equations for
simple lighting and inhomogeneous for complex illumination.
Quantitatively, our framework shows that the minimal number
of motions required to resolve shape is greater for more com-
plex scenes. Prior works that assume brightness constancy,
Lambertian BRDF or a known directional light source fol-
low as special cases of our stratification. We illustrate with
synthetic and real data how potential reconstruction methods
may exploit our framework.

1. Introduction
An open problem in computer vision since early works

on optical flow has been to determine the shape of an ob-
ject with unknown reflectance undergoing differential motion,
when observed by a static camera under unknown illumina-
tion. This paper presents a theory to solve the problem for
both orthographic and perspective camera projections, with
arbitrary unknown distant lighting (directional or area).

Unlike traditional approaches to shape recovery from mo-
tion like optical flow [6, 10] or multiview stereo [15], our
theory does not make physically incorrect assumptions like
brightness constancy, or simplifying ones like Lambertian
reflectance. In Section 3, we correctly model the dependence
of image formation on the bidirectional reflectance distribu-

tion function (BRDF) and illumination, to derive a physically
valid differential flow relation. Remarkably, it can be shown
that even when the BRDF and illumination are unknown, the
differential flow constrains the shape of an object through an
invariant relating surface depth to image derivatives.

The form of the invariant depends on the camera projec-
tion and the complexity of the illumination (see Table 1 for a
summary). For orthographic projections, considered in Sec-
tion 4, three differential motions suffice and the invariant is a
quasilinear partial differential equation (PDE). For perspec-
tive projections, we show in Section 5 that surface depth may
be directly recovered from four differential motions, with an
additional linear PDE constraining the surface normal. The
involved PDEs are homogeneous for simple illuminations, but
inhomogeneous for complex lighting. Besides characterizing
the invariants, in each case, we also study the precise extent
to which surface reconstruction may be performed.

Our theory can be considered a generalization of several
prior works. Notably, the brightness constancy relation pop-
ularly used in optical flow [6, 10] is a special case of our
differential flow relation, as are more physically-based studies
that relate the motion field to radiometric entities assuming
diffuse reflectance [11, 12]. Recent work by Basri and Frolova
[1] can be seen as a special case for two views, orthographic
projection, Lambertian BRDF and known directional lighting.
All of these restrictions are generalized by our theory. We
also derive a stratification of shape recovery from differential
object motions (Section 6 and Table 1), which demonstrates
that the hardness of a reconstruction problem may be qual-
ified by the nature of the underlying BRDF-invariant PDE
and quantified by the number of motions required to solve it.
Note that the limits imposed by our theory on the hardness of
motion field estimation are fundamental ones – they hold true
regardless of the actual reconstruction method employed.

In summary, this paper makes the following contributions:

• A theory that relates shape to object motion, for unknown
isotropic BRDF and illumination (directional or area),
under orthographic and perspective projections.
• Delineation of the precise extent to which shape may be

recovered using the proposed invariants.
• A stratification of the hardness of shape recovery from

motion, under various imaging conditions (Table 1).
• Generalization of prior works within our stratification.



Camera Light BRDF #Motions Surface Constraint Shape Recovery Theory
Persp. Brightness Constancy 1 Lin. eqn. (optical flow) Depth [6, 10]
Orth. Known, Dirn. Lambertian 1 Inhomog. quasilinear PDE Char. curves [1], Eqn. (35)
Persp. Known, Dirn. Lambertian 1 Inhomog. quasilinear PDE Char. curves [11], Eqn. (36)
Orth. Colocated Unknown 2 Homog. quasilinear PDE Level curves Prop. 2, 3
Orth. Unknown Unknown 3 Inhomog. quasilinear PDE Char. curves Prop. 2, 4
Persp. Colocated Unknown 3 Lin. eqn. + Homog. lin. PDE Depth + Gradient Cor. 1
Persp. Unknown Unknown 4 Lin. eqn. + Inhomog. lin. PDE Depth + Gradient Prop. 5

Table 1. Stratification results from our theory, that establish the hardness of shape recovery under object motion, in relation to the complexity of
BRDF and illumination. The qualitative hardness of shape from motion is indicated by the nature of reconstruction invariant and quantified by
minimal number of required motions. Our results also generalize several prior works. Note that k+1 images are required to observe k motions.

2. Related Work
Optical flow has traditionally assumed brightness con-

stancy, which is physically inaccurate, even for Lambertian
reflectance [11, 17]. While attempts have been made to relax
the assumption for certain reflectance models [5, 12], our
work provides the first unified theoretical and computational
paradigm that relates shape recovery to image derivatives
from object motion, with unknown BRDF and illumination.

Within stereo, Simakov et al. propose a dense correspon-
dence measure for Lambertian surfaces that accounts for first
order spherical harmonics of environment illumination [16].
Similar to our setup, albeit limited to Lambertian reflectance
and directional lighting, passive photometric stereo methods
[9, 18] use object motion to reconstruct a dense depth map.
Our contributions generalize those methods, since our shape
recovery is invariant to BRDF and illumination.

Surface reconstruction for general BRDFs has also been
studied for several other situations. Shape recovery from
specular flow on mirror surfaces has been analyzed by Canas
et al. [2]. Shape from shading is extended to a parametric
non-Lambertian BRDF model in [8]. The Helmholtz reci-
procity principle is exploited by Zickler et al. to extend stereo
to general BRDFs [19]. Sato et al. recover shape under non-
Lambertian reflectance using an isometric relationship be-
tween change in intensity profiles under light source motion
and surface normal differences [14]. In computer graphics,
Ramamoorthi et al. have developed a theory of shading varia-
tions with first-order illumination changes [13], while Chen
and Arvo have studied ray differentials [4].

The key motion cues for shape reconstruction are related
to lighting, object or camera. Chandraker et al. [3] answer
the question of what (differential) light source motion reveals
about object shape, when BRDF is unknown. In similar spirit,
this work definitively answers the second question, pertaining
to shape recovery from object motion.

3. Shape and Motion for General BRDFs
Setup and notation The camera and lighting in our setup
are fixed, while the object moves. The object BRDF is as-
sumed isotropic and homogeneous (or having slow spatial
variation), with an unknown functional form. The distant illu-
mination may be directional or environment. Interreflections

and shadows are assumed negligible. Let the focal length of
the camera be f . The principal point on the image plane is
defined as the origin of the 3D coordinate system, with the
camera center at (0, 0,−f)>. Denoting β = f−1, a 3D point
x = (x, y, z)> is imaged at u = (u, v)>, where

u = x/(1 + βz) , v = y/(1 + βz). (1)

Differential motion Using the projection equations in (1),
the motion field is given by[

µ1

µ2

]
=

[
u̇
v̇

]
=

1

1 + βz

[
ẋ− βuż
ẏ − βvż

]
. (2)

Consider a small rotation R ' I + [ω]× and translation
τ = (τ1, τ2, τ3)

>, where [ω]× is the skew-symmetric matrix
of ω = (ω1, ω2, ω3)

>. Then, ẋ = ω × x + τ for a point x
on the object. In the perspective case, the motion field is

µ =

(
α1 +

α2 + ω2z

1 + βz
, α3 +

α4 − ω1z

1 + βz

)>
, (3)

where α1 = ω2βu
2 − ω1βuv − ω3v, α2 = τ1 − βuτ3,

α3 = −ω1βv
2 + ω2βuv + ω3u and α4 = τ2 − βvτ3. Under

orthography, β → 0, thus, the motion field is

µ = (α5 + ω2z, α6 − ω1z)
>
, (4)

where α5 = τ1 − ω3v and α6 = τ2 + ω3u.

Differential flow relation Assuming isotropic BRDF ρ, the
image intensity of a 3D point x, imaged at pixel u, is

I(u, t) = σ(x)ρ(n,x), (5)

where σ is the albedo and n is the surface normal at the point.
The cosine fall-off is absorbed within ρ. The BRDF ρ is usu-
ally written as a function of incident and outgoing directions,
but for fixed lighting and view, can be seen as a function of
surface position and orientation. This is a reasonable image
formation model that subsumes traditional ones like Lam-
bertian and allows general isotropic BRDFs modulated by
spatially varying albedo. Note that we do not make any as-
sumptions on the functional form of ρ, in fact, our theory will
derive invariants that eliminate it.

Considering the total derivative on both sides of (5), using
the chain rule, we have

Iuu̇+ Iv v̇ + It = σ
d

dt
ρ(n,x) + ρ

dσ

dt
. (6)



Since σ is intrinsically defined on the surface coordinates,
its total derivative vanishes (for a rigorous derivation, please
refer to Appendix A). Noting that µ = (u̇, v̇)> is the motion
field, the above can be rewritten as

(∇uI)
>µ+ It = σ

[
(∇nρ)

>(ω × n) + (∇xρ)
>ν
]
, (7)

where ν is the linear velocity and we use ṅ = ω × n. Since
lighting is distant and BRDF homogeneous (or with slow spa-
tial variation), ∇xρ is negligible. Moreover, using standard
vector identities, (∇nρ)

>(ω×n) = (n×∇nρ)
>ω. Denoting

E = log I , we note that the albedo can be easily eliminated
by dividing out I(u, t), to yield the differential flow relation:

(∇uE)>µ+ Et = (n×∇n log ρ)>ω. (8)

The differential flow relation in (7) and (8) is a strict gener-
alization of the brightness constancy relation used by the vast
majority of prior works on optical flow [6, 10]. Indeed, with a
constant BRDF ρ = 1, the RHS in (7) or (8) vanishes, which
is precisely the brightness constancy assumption. However,
note that ρ = 1 is physically unrealistic – even the most basic
Lambertian assumption is ρ(n) = n>s, in which case (8)
reduces to a well-known relation [12]:

(∇uE)>µ+ Et =
(n× s)>ω

n>s
. (9)

In the following, we explore the extent to which the motion
field µ and object shape may be recovered using (8), under
both orthographic and perspective image formation. Precisely,
we show that it is possible to eliminate all BRDF and lighting
effects in an image sequence, leaving a simple relationship
between image derivatives, surface depths and normals.

4. Orthographic Projection
In this section, we consider recovery of the shape of an

object with unknown BRDF, using a sequence of differential
motions. Under orthography, the motion field µ is given by
(4). Denoting π = n×∇n log ρ, one may rewrite (8) as

pz + q = ω>π, (10)

where, using (4), p and q are known entities given by

p = ω2Eu − ω1Ev (11)
q = α5Eu + α6Ev + Et. (12)

4.1. Rank-Deficiency in an Image Sequence
For m ≥ 3, consider a sequence of m + 1 images,

E0, · · · , Em, where Ei is related to E0 by a known differen-
tial motion {ωi, τ i}. We assume that the object undergoes
general motion, that is, the set of vectors ωi, i = 1, · · · ,m,
span R3. Then, from (10), we have a set of relations

piz + qi = π>ωi, i = 1, · · · ,m. (13)

Note that pi, qi andωi are known from the images and calibra-
tion, while surface depth z and the entity π related to normals

and BRDF are unknown. It might appear at a glance that
using the above m relations in (13), one may set up a linear
system whose each row is given by [pi,−ωi

1,−ωi
2,−ωi

3]
>, to

solve for both z and π at every pixel. However, note the form
of pi = Euω

i
2 − Evω

i
1, which means that the first column

in the involved m× 4 linear system is a linear combination
of the other three columns. Thus, the linear system is rank
deficient (rank 3 in the general case when the set of vectors
{ωi}, i = 1, · · · ,m, span R3), whereby we have:

Proposition 1. Under orthographic projection, surface depth
under unknown BRDF may not be unambiguously recovered
using solely motion as the cue.

4.2. BRDF-Invariant Constraints on Surface
While one may not use (10) directly to obtain depth, we

may still exploit the rank deficiency to infer information about
the surface depth, as stated by the following:

Proposition 2. For an object with unknown BRDF, observed
under unknown lighting and orthographic camera, three dif-
ferential motions suffice to yield a BRDF and lighting invari-
ant relation between image derivatives and surface geometry.

Proof. Consider a sequence of images E0, · · · , Em, where
m ≥ 3, such that Ei is related to E0 by a known differen-
tial motion {ωi, τ i} for i = 1, · · · ,m and the vectors {ωi}
span R3. Let bi = (Euω

i
2 − Evω

i
1,−ωi

1,−ωi
2,−ωi

3)
> and

q = (q1, · · · , qm)>. Then, defining B =
[
b1, · · · ,bm

]>
,

we have a system of equations of the form (13) given by
B(z,π>)> = q. From Proposition 1, we have rank(B) = 3.
It may be easily verified that null(B) = (1,−Ev, Eu, 0)

>.
Thus, we have the parameterized solution

(z,π>)> = −B+q+ k(1,−Ev, Eu, 0)
>, (14)

where B+ is the Moore-Penrose pseudoinverse of B and k an
arbitrary scalar. Define γ = −B+q and γ′ = (γ2, γ3, γ4)

>.
Then, we have the following two relations

z = γ1 + k (15)

π = γ′ + k(−Ev, Eu, 0)
>. (16)

From the definition of π, we have n>π = 0. Substituting
from the above two relations (with k = z − γ1), we get

(λ1 + λ2z)n1 + (λ3 + λ4z)n2 − γ4n3 = 0, (17)

where λ1 = −(γ2+γ1Ev), λ2 = Ev , λ3 = −γ3+γ1Eu and
λ4 = −Eu. Noting that n1/n3 = −zx and n2/n3 = −zy,
we may rewrite (17) as

(λ1 + λ2z)zx + (λ3 + λ4z)zy + γ4 = 0, (18)

which is independent of BRDF and lighting.

Thus, we may directly relate surface depth and gradient to
image intensity, even for unknown BRDF and illumination.
This is a fundamental constraint that relates object shape to
motion, regardless of choice of reconstruction method.



4.3. Surface Depth Estimation
Next, we consider the precise extent to which surface depth

may be recovered using Proposition 2. We first consider
the simpler case of a colocated source and sensor, where an
isotropic BRDF is given by ρ(n>s), for an unknown function
ρ. For our choice of coordinate system, s = (0, 0,−1)>.
Recall that π = n×∇n log ρ. It is easily verified that π3 = 0,
thus, γ4 = 0 using (14). The relation in (18) now becomes

zx/zy = −(λ3 + λ4z)/(λ1 + λ2z) (19)
where the λi, i = 1, · · · , 4 are defined as before. Now, we
are in a position to state the following result:

Proposition 3. Two or more differential motions of a surface
with unknown BRDF, with a colocated source and sensor,
yield level curves of surface depth, corresponding to known
depths of some (possibly isolated) points on the surface.

Proof. Define a = (λ1 + λ2z, λ3 + λ4z)
>. Then, from (19),

a>∇z = 0. (20)
Since ∇z is orthogonal to the level curves of z, the tangent
space to the level curves of z is defined by a. Consider
a rectifiable curve C(x(s), y(s)) parameterized by the arc
length parameter s. The derivative of z along C is given by

dz

ds
=
∂z

∂x

dx

ds
+
∂z

∂y

dy

ds
. (21)

If C is a level curve of z(x, y), then dz/ds = 0 on C. Define
t = (dx/ds, dy/ds). Then, we also have

t>∇z = 0. (22)
From (20) and (22), it follows that a and t are parallel. Thus,
t2/t1 = a2/a1, whereby we get

dy/dx = (λ3 + λ4z)/(λ1 + λ2z). (23)

Along a level curve z(x, y) = c, the solution is given by

z = c,
dy

dx
=
λ3 + λ4c

λ1 + λ2c
. (24)

Given the value of z at any point, the ODE (24) determines
all other points on the surface with the same value of z.

Thus, (19) allows reconstruction of level curves of the
surface, with unknown BRDF, under colocated illumination.
Note that (19) is a first-order, homogeneous, quasilinear par-
tial differential equation (PDE). Similarly, we may interpret
(18) as a PDE in z(x, y), in particular, it is an inhomogeneous,
first-order, quasilinear PDE. This immediately suggests the
following surface reconstructibility result in the general case:

Proposition 4. Three or more differential motions of a sur-
face with unknown BRDF, under unknown illumination, yield
characteristic surface curves C(x(s), y(s), z(s)), defined by

1

λ1 + λ2z

dx

ds
=

1

λ3 + λ4z

dy

ds
=
−1
γ4

dz

ds
(25)

corresponding to depths at some (possibly isolated) points.

Proof. Please refer to Appendix B.

Input (1 of 6) (b) Level curves (c) Depth map
Figure 1. Given orthographic images (left) under five differential
motions of a surface with non-Lambertian BRDF under colocated
illumination, level curves of the surface are reconstructed using (24)
(center). The curves in red represent all points with the same depth
as the points marked in green. The surface may be reconstructed by
interpolating between the level curves (right).

Input (1 of 6) Char. curves Depth map
Figure 2. Given orthographic images (left) under five differential
motions of a surface with non-Lambertian BRDF under unknown
lighting, characteristic curves of (25) are reconstructed (center).
Initial information is provided at green points to compute depths
along the corresponding red curve. The surface is reconstructed by
interpolating between the characteristic curves (right).

4.4. Surface Reconstruction
Propositions 3 and 4 suggest an approach to surface recon-

struction. Given depth z0 at point (x0, y0)>, for a small step
size ds, the relations (24) or (25) yield (dx, dy, dz)>, such
that (x0 + dx, y0 + dy)> lies on the characteristic curves of
(18) through (x0, y0)

>, with depth z0 + dz. The process is
repeated until the entire characteristic curve is estimated.

Note that dz is zero for the colocated case since character-
istic curves correspond to level curves of depth, while it is in
general non-zero for the non-colocated case. In practice, ini-
tial depths z0 may be obtained from feature correspondences,
or the occluding contour in the non-colocated case, as in [1].

Figure 1 illustrates the characteristic curves recovered for
a synthetic sphere and vase, rendered under colocated illumi-
nation. Orthographic images are recorded for five differential
motions, with arbitrary rotations of approximately 0.5◦ and
translations 1 mm. Note the clear presence of specularities.
After computing depths along several characteristic curves
using the BRDF-invariant relation (23), we interpolate depths
between the curves, to recover the entire surface geometry.

Figure 2 shows the same procedure for the non-colocated
case, using the BRDF-invariant relation in (25).



5. Perspective Projection
In this section, we relax the assumption of orthography.

Surprisingly, we obtain even stronger results in the perspec-
tive case, showing that with four or more differential motions
with unknown BRDF, we can directly recover surface depth,
as well as a linear constraint on the derivatives of the depth.
Strictly speaking, our theory is an approximation in the per-
spective case, since viewing direction may vary over object
dimensions, thus, ∇xρ may be non-zero in (7). However, we
illustrate in this section that accounting for finite focal length
has benefits, as long as the basic assumption is satisfied that
object dimensions are small compared to camera and source
distance (which ensures that∇xρ is negligibly small).

5.1. Differential Flow Relation
In the perspective case, one may rewrite (8) as (compare

to the linear relation in (10) for the orthographic case),

p′
(

z

1 + βz

)
+ r′

(
1

1 + βz

)
+ q′ = ω>π, (26)

where p′ = Euω2 − Evω1, q′ = α1Eu + α3Ev + Et and
r′ = α2Eu + α4Ev are known entities, using (3).

Now, one may derive a theory similar to the orthographic
case by treating z/(1 + βz), 1/(1 + βz) and π as indepen-
dent variables and using the rank deficiency (note the form
of p′) arising from a sequence of m ≥ 4 differential motions.
We leave the derivations as an exercise for the reader, but note
that most of the observations in the preceding section for the
orthographic case hold true in the perspective case too, albeit
with the requirement of one additional image.

Instead, in the following, we take a closer look at the
perspective equations for differential flow, to show that they
yield a more comprehensive solution for surface geometry.

5.2. BRDF-Invariant Depth Estimation
We demonstrate that under perspective projection, object

motion can completely specify the surface depth, without any
initial information:

Proposition 5. Four or more differential motions of a surface
with unknown BRDF, under unknown illumination, suffice to
yield under perspective projection:

(i) the surface depth
(ii) a linear constraint on the derivatives of surface depth.

Proof. For m ≥ 4, let images E1, · · · , Em be related to E0

by known differential motions {ωi, τ i}, where ωi span R3.
From (26), we have a sequence of differential flow relations

(p′
i
+ βq′

i
)z − ((1 + βz)π)>ωi + (q′

i
+ r′

i
) = 0, (27)

for i = 1, · · · ,m. Let ci = [p′
i
+ βq′

i
,−ωi

1,−ωi
2,−ωi

3]
>

be the rows of the m × 4 matrix C =
[
c1, · · · , cm

]>
. Let

q′ = [q′1, · · · , q′m]> and r′ = [r′1, · · · , r′m]>. Then, we
may rewrite the system (27) as

C

[
z

(1 + βz)π

]
= −(q′ + r′) (28)

which yields the solution[
z

(1 + βz)π

]
= −C+(q′ + r′) (29)

where C+ is the Moore-Penrose pseudoinverse of C. Define
ε = −C+(q′ + r′) and ε′ = (ε2, ε3, ε4)

>. Then, we have

z = ε1, (1 + βz)π = ε′. (30)

By definition, π = n ×∇n log ρ, thus, n>π = 0. We now
have two separate relations for depths and normals:

z = ε1 (31)

n>ε′ = 0. (32)

Thus, in the perspective case, one may directly use (31) to
recover the surface depth. Further, noting that n1/n3 = −zx
and n2/n3 = −zy , we may rewrite (32) as

ε2zx + ε3zy − ε4 = 0, (33)
which is a linear constraint on surface depth derivatives.

Again, in the simpler case of colocated illumination, we
observe that ε4 = 0, thus, the minimal imaging requirement
is three motions. Further, from (32), the ratio −ε2/ε3 yields
the slope of the gradient, leading to:

Corollary 1. Three or more differential motions of a surface
with unknown BRDF, under unknown illumination, suffice to
yield under perspective projection the surface depth and the
slope of the gradient.

Thus, we have shown that in the perspective case, even
when BRDF and illumination are unknown, one may derive
an invariant that relates shape to object motion, through a
linear relation and a linear PDE on the surface depth. Again,
we note that this is a fundamental constraint, independent of
any particular reconstruction approach.

5.3. Surface Reconstruction
5.3.1 Direct Depth Recovery
As established by Proposition 5, under perspective projection,
one may directly recover the surface depth using (31). Figure
3 illustrates this with synthetic data. An object with unknown
BRDF is imaged with perspective projection under unknown
illumination after undergoing four arbitrary differential mo-
tions (approximately 0.5◦ rotation and 1 mm translation each).
Note that no prior knowledge of the surface is required in the
perspective case, even at isolated points.

5.3.2 Combining Depth and Normal Information
Recall that Proposition 5 in fact supplies an additional con-
straint on the surface gradient at every point. Thus, one may
solve the following linear system that combines the two con-
straints (31) and (33) on depths and gradients:

min
z(x,y)

(z − ε1)2 + λ(ε2zx + ε3zy − ε4)2 , (34)

where λ is a relative weighting term. Standard discretization
schemes may be used to represent zx and zy . Then, the above



(a) Input image (1 of 5) (b) Reconstructed surface

Figure 3. (a) One of five images (four motions) under perspective pro-
jection, with arbitrary non-Lambertian BRDF and unknown lighting.
(b) Depth map estimated using Proposition 5.

(a) Input image (1 of 5) (b) Reconstructed surface

Figure 4. (a) One of five images (four motions), with arbitrary non-
Lambertian BRDF and unknown lighting, under perspective projec-
tion. (b) Surface recovery using (34).

is a highly sparse linear system in the depths z, which may be
solved using a linear least squares solver.

Incorporating gradient constraints has the effect of regu-
larizing the depth estimation by introducing neighborhood
information, which may be advantageous in noisy scenarios.
Figure 4 illustrates shape recovery using (34) with synthetic
data. The object is imaged under perspective projection after
undergoing five random differential motions (approximately
0.5◦ rotation and 1 mm translation each).

6. Stratification of Shape from Motion
Our theory not only shows the possibility of shape recovery

under unknown BRDFs and lighting, but also derives the
minimum computational and imaging budget required and the
precise extent to which surface shape may be recovered. In
this section, we discuss how this work establishes a theoretical
notion that relates the hardness of surface reconstruction to the
scene complexity, which supports our intuitive understanding
of an “easy” reconstruction problem versus a “hard” one.

Generalization of [1] For the Lambertian BRDF, under
known directional lighting, Basri and Frolova [1] show that
shape and image derivatives may be related by a quasilinear
PDE. They use special considerations of the two-view setup
to arrive at the result. In the context of our theory, under a
directional light source s = (s1, s2, 1)

>/
√
s21 + s22 + 1, we

have ρ(n) = n>s. Then, we may rewrite the basic relation in
(8) as (9). For the orthographic case, using (11) and (12), we
may again rewrite (9) as:

pz + q =
λ′1zx + λ′2zy + λ′3
−s1zx − s2zy + 1

, (35)

with known scalars λ′1 = ω2 − ω3s2, λ′2 = −ω1 + ω3s1 and
λ′3 = −ω1s2 + ω2s1. Note that (35) is a quasilinear PDE, as
expected from the result of [1]. It may be verified that the
perspective case can also be written as a quasilinear PDE:

(p′ + βq′)z + (q′ + r′)

1 + βz
=

λ′1zx + λ′2zy + λ′3
−s1zx − s2zy + 1

. (36)

Note that the above are obtained as by-products of a theory far
more powerful than [1]. In particular, the framework of this
paper can also handle general BRDFs, unknown directional
or area lighting and various camera projections.

General Stratification The above result and those derived
in Sections 4 and 5 suggest a general stratification of shape
recovery from object motion, shown in Table 1. Shape may
be recovered under Lambertian BRDF and known lighting
with one motion, while an unknown BRDF with colocated
lighting requires two motions under orthography and three
under perspective projection. An unknown BRDF, unknown
illumination and perspective projection may be considered an
even “harder” reconstruction problem, for which the minimal
imaging requirement is four motions. Similarly, simpler il-
luminations like colocated lighting result in a homogeneous
PDE, while more complex illuminations make the PDE inho-
mogeneous, whose solution is arguably harder.

Thus, the nature of the reconstruction invariant is a qual-
itative indicator of the hardness of shape from motion. For
a given scene complexity, the hardness of reconstruction is
quantified by the minimum number of motions specified by
our theory for reconstruction to be possible. These conclu-
sions are summarized in Table 1.

7. Experiments on Real Data
In this section, we demonstrate our theory on real data.

While it requires committing to a specific acquisition setup,
we note that our theory pertains to fundamental limits on
reconstruction and will be valid for other choices too.

Setup We use a Canon EOS 5D camera, with focal length
50 mm, placed approximately 0.7 m away from the object
with unknown BRDF. Our acquisition environment has no
special design to simulate a dark room. The illumination can
be arbitrary, in this case, an off-the-shelf light bulb at an un-
known position. The object is mounted on a platform whose
motion is measured (but not controlled) using a gyroscope.
The camera is calibrated and a hand-eye calibration is per-
formed to transform the gyroscope motions into the camera
coordinate system. Arbitrary small displacements are man-
ually imparted to the platform and the gyroscope motion is
recorded. Typical differential motions are about 0.5− 1◦ for
rotation and 1− 10 mm for translation.

For objects with distinctive texture, an alternative is to
track correspondences and use structure from motion to deter-
mine relative camera poses in the object’s frame of reference.
Again, we note that the results of our theory will continue to
hold for that or any other imaging setup.
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Figure 5. (Left) One of seven input images, related by six differential
motions, of a real object with unknown BRDF, acquired under un-
known illumination. Note the clearly visible non-Lambertian BRDF
effects. (Right) Views of surface reconstructed using the theory
of Section 5. Note that our theory correctly accounts for intensity
variations even when the BRDF and illumination are arbitrary and
unknown, thus, a high level of detail is recovered.

Reconstruction Since the above setup results in a perspec-
tive projection, we use the theory of Section 5. Logarithms are
evaluated for the input images to eliminate albedo variations.
Spatial derivatives are computed using central differencing,
with a smoothing filter to suppress high frequency differen-
tiation noise. Temporal derivatives are computed by simply
subtracting images smoothed by a Gaussian kernel. The linear
system defined by (28) is set up at every pixel and solved as
(29). The solution yields the depth map (31), in addition to a
linear constraint on the gradient (32).

In Figure 5, we show the reconstruction for a porcelain
bas-relief sculpture with fine depth variations, using six dif-
ferential motions. It is apparent from the clearly visible gloss
and specularities in the input images, shown on the left, that
the unknown BRDF is non-Lambertian. The reconstructed
surface using the solution in (31) is shown on the right. Note
the high level of surface detail that is recovered, without any
knowledge of BRDF or illumination. This demonstrates the
practical utility of our theory which does not assume bright-
ness constancy or simplified forms of the BRDF and illumina-
tion, rather it correctly accounts for shading changes through
an invariant that eliminates the BRDF and lighting.

In Figure 6, we show a similar reconstruction for a plastic
shell. Again, note that the unknown BRDF is clearly non-
Lambertian and the lighting is unknown, yet our theory allows
surface reconstruction with fine details.

8. Discussion and Future Work
This paper answers the question of what motion reveals

about shape, with unknown isotropic BRDF and arbitrary,
unknown distant illumination, for orthographic and perspec-
tive projections. We derive differential flow invariants that
relate image derivatives to shape and exactly characterize the
object geometry that can be recovered. This work general-
izes traditional notions of brightness constancy or Lambertian
BRDFs in the optical flow and multiview stereo literatures.

Figure 6. (Left) One of eleven input images, related by ten differen-
tial motions, of a real object with unknown BRDF, acquired under
unknown illumination. Note the clearly visible non-Lambertian
BRDF effects. (Center) Top view of the surface reconstructed using
the theory of Section 5. (Right) Side view of the same reconstruction.
Correctly accounting for intensity variations, in spite of unknown
BRDF and illumination, allows us to recover surface details such as
the fine striations between the lobes of the shell.

Our results are not just valid for a particular approach to re-
construction, rather they impose fundamental limits on the
hardness of surface reconstruction. In the process, we also
present a stratification of shape from motion that relates hard-
ness of reconstruction to scene complexity – qualitatively in
terms of the nature of the involved PDE and quantitatively in
terms of the minimum number of required motions.

Many of the relations, such as (19), (35) and (36) may be
expressed in the form f(z) = g(n). With the availability of
depth sensors, it becomes possible to measure f(z), making
the optimization problem to solve for only n easier. An
interesting future direction would be to study the accuracy
and convergence of alternating minimization approaches to
simultaneously estimate depth and normals.

Lighting, object motion and viewpoint change are funda-
mental cues to understanding shape. This work and previous
results have shown that differential motions carry rich infor-
mation, independent of the lighting and BRDF. This paper
developed a general theory to understand the information car-
ried in the motion cue, while prior works like [3] have taken a
first step towards considering differential photometric stereo
for the lighting cue. An interesting future direction would
be to consider small viewpoint changes, as well as a unified
framework that combines all the differential cues.
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A. General BRDF Differential Flow Relation
Recall that in our setup, the camera and illumination are fixed,

while the object is moving. Following optical flow studies [11, 17],
we make a distinction between entities directly expressed in terms
of intrinsic surface coordinates (such as albedo) and those expressed
in 3D coordinates (such as camera direction).

The 3D position vector of a point on the surface at time t is
x(a, b, t), while the corresponding surface normal is n(a, b, t). Con-
sider a point u = (x, y)> on the image. At time t, it is the
image of the point x(a, b, t). At time t + δt, it is the image of



x(a− δa, b− δb, t+ δt). Let δx denote that displacement, then the
corresponding change in surface normal is

δn = ω × n(a− δa, b− δb, t)δt. (37)

The isotropic BRDF on the surface is a function of normal and
position, denoted by ρ(n,x). Let the albedo, which is an intrinsic
surface property, be σ(a, b). Then, the image at pixel u at time t is:

I(u, t) = σ(a, b) ρ(n(a, b, t),x(a, b, t)). (38)

Let (a′, b′) = (a − δa, b − δb) and t′ = t + δt. Let the image of
x(a′, b′, t) be I(u′, t), where u′ = u− δu. Then we have:

I(u, t′) = σ(a′, b′)ρ
(
n(a′, b′, t′),x(a′, b′, t′)

)
= I(u′, t) + σ

[
(ω × n)>∇nρ+ ν

>∇xρ
]
δt (39)

where the surface entities correspond to (a′, b′, t) and ν denotes the
velocity of x(a′, b′, t). Subtracting I(u, t) from (39), we have

∂I

∂t
δt = I(u, t′)− I(u, t)

= −∇uIδu+ σ
[
(ω × n)>∇nρ+ ν

>∇xρ
]
δt (40)

For consistency, we make the transformation u → u + δu and
a→ a+ δa. Then, the above basic relation can be written as

(∇uI)
>µ+

∂I

∂t
= σ

[
(∇nρ)

>(ω × n) + (∇Xρ)
>ν
]
. (41)

where µ is the velocity of the image point (the motion field), which
gives us (7).

B. Proof of Proposition 4
The proof uses standard constructs from PDE theory [7], illustrated
here for completeness.

Proof. Consider the PDE in (18), given by
(λ1 + λ2u)ux + (λ3 + λ4u)uy + γ4 = 0, (42)

where γ4 and λi, i = 1, · · · , 4, are known functions of (x, y). Sec-
tion 4.2 establishes that the integral surface of (42), S : z = u(x, y),
is indeed the surface under consideration and the coefficient func-
tions can be obtained from three or more differential motions of the
surface. With a = (a1, a2, a3)

> = (λ1 + λ2u, λ3 + λ4u, −γ4)>,
we rewrite (42) as a>(∇u>,−1)> = 0. Then, we note that the
integral surface S : z = u(x, y) is tangent everywhere to the vector
field given by a. Consider the curves C(x(s), y(s), z(s)), given by
(25), written in terms of a parameter s ∈ I ⊂ R. We note that the
curves C, if they exist, have a as tangent directions. Next, we derive
the relationship between C and S, in particular, we show that if a
point p = (x0, y0, z0)

> ∈ C lies on S, then C ⊂ S.
Let there exist p = (x0, y0, z0)

> ∈ C, such that p ∈ S, that is,
x0 = x(s0), y0 = y(s0), z0 = z(s0) = u(x0, y0). (43)

for some parameter value s = s0 ∈ I. Next, we define
w = w(s) = z(s)− u(x(s), y(s)). (44)

Then, it is clear that w(s) is the solution to the initial value problem
dw

ds
= (ux, uy, uz)

>a(x, y, w + u), w(s0) = 0. (45)

Further, we note that w = 0 is a particular solution of the above
ODE, since z = u(x, y) is a solution to (42). Also, the solution to
(45) must be unique. Thus, z(s) = u(x(s), y(s)), which establishes
that C ⊂ S. This completes the proof that the characteristic curves
C, given by (25), reside on the surface S.
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