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Abstract

In a scene observed from a fized viewpoint, the set of shadow boundaries in an
image changes as a point light source (nearby or at infinity) assumes different loca-
tions. We show that for any finite set of point light sources illuminating an object
viewed under either orthographic or perspective projection, there is an equivalence
class of object shapes having the same set of shadows. Members of this equivalence
class differ by a four parameter family of projective transformations, and the shad-
ows of a transformed object are identical when the same transformation is applied
to the light source locations. Under orthographic projection, this family is the gener-
alized bas-relief (GBR) transformation, and we show that the GBR transformation
18 the only family of transformations of an object’s shape for which the complete set
of imaged shadows is identical. Finally, we show that given multiple images under
differing and unknown light source directions, it is possible to reconstruct both an
object’s surface and the light source locations up to this family of transformations

from the shadows alomne.

Index Terms: Shape Ambiguities, Shape from Shadows, Reconstruction, Object Repre-

sentation, Projective Geometry.



1 Introduction

The shadows produced by an object depend both on the object’s shape and the position
of the light sources by which it is illuminated. If the light source positions remain fixed,
but the shape of the object changes, then shadows change as well. If, however, the object
is flattened in the direction that the observer is gazing (as is done in the case of classical
relief sculpture), then for any flattening of the surface relief, there is a corresponding
change in the light source direction such that the shadows appear the same. This is not
restricted to classical reliefs but, as we will later show, applies equally to a greater set of
projective transformations.

More specifically, when an object is viewed from a fixed viewpoint, there is a four
parameter family of projective transformations of the object’s structure and the light
source locations such that the images of the shadows remain the same. It follows then, that
when light source positions are unknown one cannot determine the Euclidean structure of
an object from its shadows alone. Yet in all past work on reconstruction from shadows, it
is explicitly assumed that the directions or locations of the light sources are known. An
implication of these results is that two objects differing by these transformations cannot
be recognized solely from their shadow lines.

In early work, Waltz considered labelings of shadow edges in line drawing interpreta-
tion [1]. Subsequently, Shafer showed how geometric constraints on surface orientation
could be obtained from labeled line drawings using shadow and surface outlines under
orthographic projection [2]. The Entry-Exit method was developed to segment and label
shadow boundaries using information about the projection onto the image plane of the
light source direction [3]. Kender and his colleagues have undertaken a series of studies
pertaining to metric reconstruction of surfaces from the shadows in multiple images of an
object in fixed pose when the light source direction is known [4, 5, 6], and this problem
was recently reexamined by Daum and Dudek [7]. Shadows have also been used in the

interpretation of aerial images, particularly to locate and reconstruct buildings when the



sun direction is known [8, 9, 10, 11].

Here we consider shadows on unknown objects produced by light sources whose direc-
tions are also unknown. In the next section we show that seen from a fixed viewpoint
under perspective projection, two surfaces produce the same shadows if they differ by
a particular projective transformation — which we call the Generalized Perspective Bas-
Relief (GPBR) transformation. See Figure 1 for an example of this transformation. This
result holds for any number of proximal or distant point light sources. Furthermore, un-
der conditions where perspective can be approximated by orthographic projection, this
transformation is the Generalized Bas-Relief (GBR) transformation [12]. As will be shown
in Section 3, the GBR transformation is unique in that any two smooth surfaces which
produce the same shadows must differ by a GBR.

In Section 4, we propose an algorithm for reconstructing, from the attached shadow
boundaries, the structure of an object up to a GBR transformation. The algorithm
assumes that the object is viewed orthographically and that it is illuminated by a set of
point light sources at infinity. We do not propose this algorithm with the belief that its
present form has great applicability, but rather we give it to demonstrate that under ideal
conditions, information from shadows alone is sufficient to determine the structure of the
object up to a GBR transformation. Some of the results presented in this paper originally

appeared in [13].

2 Shadowing Ambiguity

Let S be the set of all point light sources illuminating one object and S’ be the set of
all light sources illuminating a second object. We say that these two objects are shadow
equivalent if there exists a non-empty, open subset £ C & such that for every light source
s € L illuminating one object, there exists a light source in s’ € &' illuminating the second
object, such that the shadowing in both images is identical. Let us further define two

objects as being strongly shadow equivalent if for every light source illuminating one object,



there exists a source illuminating the second object such that shadowing is identical - i.e.,
shadow equivalent with £ = S. In this section we will show that two objects are shadow
equivalent if they differ by a particular set of projective transformations.

Consider a camera-centered coordinate system whose origin is at the focal point, whose
x- and y-axes span the image plane, and whose z-axis points in the direction of the optical
axis. Let a smooth surface f be defined with respect to this coordinate system and lie in
the halfspace z > 0. Since the surface is smooth, the surface normal n(p) is defined at
all points p € f.

We model illumination as a finite set of point light sources, located nearby or at infinity.
Note that this is a restriction of the lighting model presented by Langer and Zucker [14]
which permits light sources whose intensity is a function of direction as well as extended
sources such line or area sources. In this paper, we will represent surfaces, light sources,
and the camera center as lying in either a two or three dimensional real projective space
(RIP? or RIP?). (For a concise treatment of real projective spaces, see [15].) This allows
a unified treatment of both point light sources that are nearby (proximal) or distant (at
infinity) and camera models that use perspective or orthographic projection.

When a point light source is proximal, its coordinates can be expressed as s = (s, sy, 5,)7
In projective (homogeneous) coordinates, the light source ¢ € IRIP?® can be written as
0 = (84, Sy, Sz, 1)T. Note that throughout this paper, Euclidean coordinates are written
in the Roman alphabet while projective coordinates are denoted by the corresponding
Greek character (e.g. The homogeneous coordinates of s and p are respectively given by
o and 7). When a point light source is at infinity, all light rays are parallel, and so one
is concerned with the direction of the light source. The direction can be represented as a
unit vector in IR® or as point on an illumination sphere s € S2. In projective coordinates,
the fourth homogeneous coordinate of a point at infinity is zero, and so the light source
can be expressed as o = (sg, 8y, S5, 0)T. (Note that when the light source at infinity is

represented in projective coordinates, the antipodal points from S? are equated.)

For a single point source o € RIP3, let us define the set of light rays emanating from o



as the lines in IRIP? passing through o. For any other point 7 € IRIP? with 7 # o, there is
a single light ray passing through m. Naturally it is the intersection of the light rays with
the surface f which determine the shadows. Following [16, 17], we differentiate between
two types of shadows: attached shadows and cast shadows. We also consider both local
and global conditions for these to occur, and arrive at the following four definitions. (See

Figures 2 and 3.)

Definition 1 Local Attached Shadow: A surface point p is called a local attached
shadow boundary point if the ray from light source s lies in the tangent plane to the
surface at p. Algebraically, this condition can be expressed as n(p) - (p —s) = 0 for a
nearby light source (here p and s denote Euclidean coordinates) and as n(p)-s =0 for a

distant light source (here s denotes the direction of the light source).

Definition 2 Global Attached Shadow: A surface point p is called a global attached
shadow boundary point if it satisfies both the local condition stated above and the light

ray does not intersect the surface between p and s, i.e., the light source s not occluded at

P-

Definition 3 Local Cast Shadow: A surface point p is called a local cast shadow
boundary point if the light ray from s through p grazes the surface at some other point q

(i.e., q is a local attached shadow boundary point for s).

Definition 4 Global Cast Shadow: A surface point p s called a global cast shadow
boundary point if it satisfies both the local condition stated above and the light ray between
p and s does not intersect some other point on the surface that is not a global attached

shadow boundary point for s.

Before proceeding, we consider only surfaces for which the set of points satisfying the
local attached shadow condition form a curve for every s. This restriction is imposed to

avoid surfaces such as planes and cylinders that may have shadow boundaries — as defined



above — which are whole regions of the surface (e.g., when a light source at infinity is in
the direction of a cylindrical ruling).
Now consider applying an arbitrary projective transformation « : RIP? — IRIP? to both

the surface and the light source. Under this transformation, let p’ = a(p) and s’ = a(s).

Lemma 1 A point p on a smooth surface is a local attached shadow boundary point for
point light source s iff p' on a transformed surface is a local attached shadow boundary

point for point light source s'.

Proof. At a local attached shadow boundary point p, the line defined by p € RIP? and
light source s € IRIP? lies in the tangent plane at p. Since the order of contact (e.g.,
tangency) of a curve and surface is preserved under projective transformations, the line

defined by p’ and s’ lies in the tangent plane at p’. |

Lemma 2 A point p on a smooth surface is a local cast shadow boundary point for point
light source s iff p' on a transformed surface is a local cast shadow boundary point for

point light source s'.

Proof. For a local cast shadow boundary point p € IRIP? and light source s € IRIP3,
there exists another point q € IRIP? on the line defined by p and s such that q lies on an
attached shadow. Since collinearity is preserved under projective transformations, p’, q

and s’ are collinear. Hence from Lemma 1, ¢’ is also an attached shadow point. |

Taken together, Lemmas 1 and 2 indicate that under an arbitrary projective transfor-
mation of a surface and light source, the set of local shadow boundaries is a projective
transformation of the local shadow boundaries of the original surface and light source.
However, these two lemmas do not imply that the two surfaces are shadow equivalent since
the transformed points may project to different image points, or the global conditions in

Defs. 2 and 4 may not hold.



2.1 Perspective Projection: GPBR

We will further restrict the set of projective transformations. Modeling the camera as
a function v : RIP®> — IRIP? (see [18]), we require that for any point p on the surface
v(p) = v(a(p)) where a is a projective transformation — that is p and a(p) must project
to the same image point. We will consider two specific camera models in turn: perspective
projection v, and orthographic projection 7,.

Without loss of generality, consider a pinhole perspective camera with unit focal length
located at the origin of the coordinate system and with the optical axis pointed in the
direction of the z-axis. Letting the homogeneous coordinates of an image point be given by
w € IRIP?, then pinhole perspective projection of a point p who homogeneous coordinates

are 7 is given by w = I'ym where

1000
T,=|[0100 (1)
0010

For v,(p) = 7,(a(p)) to be true for any point p, the transformation must move p
along the optical ray between the camera center and p. This can be accomplished by the

projective transformation « : m — Am where

1 0 0 O
0 1 0 O
A= 0 0 1 0 |° (2)

a; ay a3 a4

We call this transformation the Generalized Perspective Bas-Relief (GPBR) transfor-
mation. Note that GPBR is a 3-D elation which is a homology where the vertex of the
homology is the origin, the vertex lies on the plane of fixed points, and all lines through

the vertex are fixed [19].

In Euclidean coordinates, the transformed surface and light source are given by

1 , 1

s =——s (3)

,:71) =
a-p+tay a-s—+ay

p



where a = (a1, as, az)”. Note that Equation 3 defines a four-parameter family of surfaces
and light source positions. Figure 2 shows a 2-d example of GPBR being applied to a
planar curve and a single light source. The effect is to move points on the surface and the
light sources along lines through the camera center in a manner that preserves shadows.
The sign of a - p + a4 plays a critical role: if it is positive, all points on f move inward or
outward from the camera center, remaining in the halfspace z > 0. On the other hand,
if the sign is negative for some points on f, these points will move through the camera
center to points with z < 0, i.e., they will not be visible to the camera. The equation
a-p+as = 0 defines a plane which divides IR? into these two cases; all points on this plane
map to the plane at infinity. A similar effect on the transformed light source location is

determined by the sign of a-s + ay.

Proposition 2.1 The image of the shadow boundaries for a surface f and light source
s 1s identical to the image of the shadow boundaries for a surface f' and light source s'

transformed by a GPBR ifa-s+as >0 anda-p+as >0 forall pe f.

Proof. Since GPBR is a projective transformation, Lemmas 1 and 2 show that the local
attached and cast shadow boundaries on the transformed surface f’ from light source s’
are a GPBR transformation of the local shadow boundaries on f from light source s. For
any point p on the surface and any GPBR transformation A, we have I'ym = I'pAm, and
so the images of the local shadow boundaries are identical.

To show that the global condition for an attached shadow in Definition 2 is also sat-
isfied, we note that projective transformations preserve collinearity; therefore, the only
intersections of the line defined by s’ and p’ with f’ are transformations of the intersec-
tions of the line defined by s and p with f. Within each light ray (a projective line),
the points are subjected to a projective transformation; in general, the order of the trans-
formed intersection points on the line may be a combination of a cyclic permutation and a
reversal of the order of the original points. However, the restriction that a - p + a4 > 0 for

all p € f and that a-s + a4 > 0 has the effect of preserving the order of points between



p and s on the original line and between p’ and s’ on the transformed line. |

It should be noted for that for any a and a4, there exists a light source s such that
a-s+aq < 0. When f is illuminated by such a source, the transformed source passes
through the camera center, and the global shadowing conditions in Defs. 2 and 4 may not
be satisfied. Hence two objects differing by GPBR are not strongly shadow equivalent.
On the other hand, for any bounded set of light sources and bounded object f, there
exists a set of ay,...,a4 such that a-s+ a4 > 0 and a-p + a4 > 0. Hence, there exist a
set of objects which are shadow equivalent.

Since the shadow boundaries of multiple light sources are the union of the shadow
boundaries from the individual light sources, this also holds for multiple light sources. It
should also be noted that the occluding contours (silhouette) of f and f' are identical,
since the camera center is a fixed point under GPBR and the occluding contour is the
same as the attached shadow boundary produced by a light source located at the camera
center.

Figure 1 shows an example of the GPBR transformation being applied to a scene
containing a teapot resting on a support plane. The images were generated using the
VORT ray tracing package — the scene contained a single proximal point light source, the
surfaces were modeled as Lambertian, and a perspective camera model was used. When
the light source is transformed with the surface, the shadows are the same for both the
original and transformed scenes. Even the shading is similar in both images, so much
so that it is nearly impossible to distinguish the two surfaces. However, from another
viewpoint, the effect of the GPBR transformation on the object’s shape is apparent.

This result compliments past work on structure from motion in which the aim of struc-
ture recovery is a weaker, non-Euclidean representation, such as affine [20, 21, 22, 23],

projective [24], or ordinal [25].



2.2 Orthographic Projection: GBR

When a camera is distant and can be modeled as orthographic projection, the visual
rays are all parallel to the direction of the optical axis. In IRIP3, these rays intersect at
the camera center which is a point at infinity. Without loss of generality consider the
viewing direction to be in the direction of the z-axis and the z- and y-axes to span the
image plane. Again, letting the homogeneous coordinates of an image point be given by

w € RIP?, orthographic projection of 7 € IRIP? can be expressed as w = I',m where

1000
T,=|0100]. (4)
0001

Now, let us consider another set of projective transformations g : RIP> — IRIP3. For
Yo(P) = Yo(9(P)) to be true for any point p, the transformation g must move p along the
viewing direction. This can be accomplished by the projective transformation g : 7 — G7

where

1 0 0 O

- 0 1 0 O (5)
g1 92 93 9G4
0 0 0 1

with g3 > 0. The mapping g is an affine transformation which was introduced in [12] and
was called the generalized bas-relief (GBR) transformation. Again, this transformation
is an elation, but in this case the vertex is at infinity and the plane at infinity is fixed.
Consider the effect of applying GBR to a surface parameterized as the graph of a depth

function, (z,y, f(z,y)). This yields a transformed surface

x x
v | = y : (6)
2 QT+ gy + gsf(x,y) + g4

See Figure 3 for an example. The parameter g3 has the effect of scaling the relief of
the surface, g; and g, characterize an additive plane, and g4 provides a depth offset. As
described in [12], when g; = g2 = 0 and 0 < g3 < 1, the resulting transformation is simply

a compression of the surface relief, as in relief sculpture.

10



Proposition 2.2 The image of the shadow boundaries for a surface f and light source
s are identical to the image of the shadow boundaries for a surface f' and light source s'

transformed by any GBR.

Proof. The proof follows that of Proposition 2.1. |

It should be noted that Proposition 2.2 applies to both nearby light sources and those
at infinity. However, in contrast to the GPBR transformation, nearby light sources do not
move to infinity nor do light sources at infinity become nearby light sources since GBR
is an affine transformation which fixes the plane at infinity. Since Proposition 2.2 holds
for any light source, all objects differing by a GBR transformation are strongly shadow
equivalent.

An implication of Propositions 2.1 and 2.2 is that when an object is observed from a
fixed viewpoint (whether perspective or orthographic projection), one can at best recon-
struct its surface up to a four parameter family of transformations (GPBR or GBR) from
shadow or occluding contour information, irrespective of the number of images and num-
ber of light sources. Under the same conditions, it is impossible to distinguish (recognize)

two objects that differ by these transformations from shadows or silhouettes.

3 Uniqueness of the Generalized Bas-Relief Trans-
formation

In Section 2.2, we have shown that objects differing by a generalized bas-relief (GBR)
transformation are strongly shadow equivalent, but it is conceivable that there could ex-
ist transformations, projective or otherwise, which could produce families of objects which
are also strongly shadow equivalent. Here we prove that under orthographic projection
the generalized bas-relief transformation is in fact unique in that there is no other transfor-
mation of an object’s surface which preserves the set of shadows produced by illuminating
the object with all possible point sources at infinity. Our proof is a generalization of the

one in [26] that considered only convex objects. Our only restrictions are that the surface
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is regular [27], that the points satisfying Def. 1 are curves (not regions), and that no
portion of the surface is occluded by another object.

Let the vector 0 = (s, 8y, $,)T denote in homogeneous coordinates a point light source
at infinity, where all light sources producing the same set of global attached shadow
boundary points are equated, i.e., (g, 8y, 8,)T = (ksg, ksy, ks,)T Vk € R,k # 0. With
this, the space of light source directions S is equivalent to the real projective plane (IRIP?),
with the line at infinity given by coordinates of the form (s,,s,,0). Note that in the
previous section, we represented light sources as points in IRIP?; here, we restrict ourselves
only to distant light sources lying on the plane at infinity of RIP3, (a real projective plane).

Let n = (ng,ny,n,)T denote the direction of a surface normal. Again, the magnitude
and sign are unimportant, so we have (ng,ny,n,)7 = (kng, kny, kn,)T Vk € R,k # 0.
Thus, the space of surface normals A is, likewise, equivalent to IRIP2. Note that under
the equation n - s = 0, the surface normals are the dual of the light sources. Each point
in the IRIP? of light sources has a corresponding line in the IRIP? of surface normals, and
vice versa.

Let us now consider the image contours determined by the image points (z,y) that
correspond to global attached shadow points for some s. These image contours are the
global attached shadow boundaries orthographically projected onto the image plane. For
lack of a better name, we will refer to them as the imaged attached shadow boundaries.
Likewise, we define the imaged cast shadow boundaries as the image contours determined
by the image points (z,y) that correspond to the projection of the global cast shadow
points for some s.

For each light source direction, there is a unique imaged attached shadow boundary.
Note that this imaged attached shadow boundary is not necessarily a single image contour
— as would be the case for a convex object — but may be composed of a collection of image
contours. The contours may not be smooth or even closed; see [28] for a discussion of
the generic structure of shadows. Thus, we have a bijection mapping the light source

directions (points in IRIP?) to the imaged attached shadow boundaries. Likewise, for
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each great circle of light source directions, there is a unique collection of imaged attached
shadow boundaries. Thus, we have a bijection mapping the great circles of light source
directions (lines in IRIP?) to collections of imaged attached shadow boundaries. Any two
great circles of light source directions intersect at one and only one point in IRIP?, as
antipodal points of the illumination sphere are equated. Thus, any two collections of
imaged attached shadow boundaries (corresponding to two great circles of light source
directions) have one and only one imaged attached shadow boundary in common.

It follows then that we have a projective isomorphism between the real projective plane
of light source directions & and an abstract projective plane of imaged attached shadow
boundaries IP?, where a “point” in the abstract projective plane is a single attached
shadow boundary, and a “line” in the abstract projective plane is the collection of imaged
attached shadow boundaries arising from a great circle of light source directions.

Now let us say that we are given two objects whose visible surfaces are described by
respective functions f(z,y) and f'(z,y). If the set of imaged attached shadow boundaries
for all light source directions are the same for both objects (i.e., if the objects are strongly
shadow equivalent), then the question arises: How are the two surfaces f(z,y) and f'(z, y)

related?

Proposition 3.1 Consider two objects satisfying the following: the surfaces are regular
[27], the points on the surfaces determined by Def. 1 are curves (not regions), and no
portion of the object is occluded by another object. If the wvisible surfaces of the two
objects f and f' are strongly shadow equivalent, then the visible surfaces are related by a

generalized bas-relief transformation.

Proof. As discussed above and illustrated in Figure 4, we can construct a projective
isomorphism between the abstract projective plane IP? of imaged attached shadow bound-
aries and the real projective plane of light source directions S = IRIP? illuminating surface
f(z,y). Consider the space of surface normals N of f which as mentioned previously is

the dual space of the light sources S. Each point in the IRIP? of light sources S has a

13



corresponding line in the IRIP? of surface normals N, and vice versa. The above mappings
are not chosen arbitrarily, but are pinned down by the intersection points of the imaged
attached shadow boundaries. Each “line” in the abstract projective plane of imaged at-
tached shadow boundaries is formed by the collection of boundaries arising from a line
(great circle) of light source directions. The imaged attached shadow boundaries forming
a “line” in IP? intersect at one or more points (z,y) in the image, and these intersection
points have a common and unique surface normal. Note that because the surface is regular
and is not occluded, the visible surface has normals covering half the Gauss sphere.

In the same manner, we can construct a projective isomorphism between IP?2 and the
real projective plane of light source directions &' illuminating the surface f'(z,y). We can
again define N to be the space of surface normals of f’, which is similarly the dual space
of the light sources S'.

Under these two mappings, we have a projective isomorphism between S and S’ which
in turn is a projective transformation (collineation) [29]. Because N and N are the duals
of § and &' respectively, the surface normals of f(z,y) are also related to the surface
normals of f'(z,y) by a projective transformation, i.e., n'(z,y) = Pn(z,y) where P is a
3 x 3 invertible matrix.

The transformation P is further restricted in that the surface normals along the oc-
cluding contour of f and f’ are equivalent since the occluding contour is after all identical
to the attached shadow for a light source aligned with the viewing direction. This implies
that the transformation P pointwise fixes the line at infinity of surface normals, and so

P must be of the form

where p3 # 0.
The effect of applying P to the surface normals is the same as applying G in Eq. 5
to the surface if py = —¢1/93, P2 = —9g2/g3 and p3 = 1/g3. That is, P has the form of

the generalized bas-relief transformation. Note that the shadows are independent of the
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translation g4 along the line of sight under orthographic projection.

The above establishes that the surface normals of f(z,y) are related to the surface
normals of f'(z,y) by n'(z,y) = Pn(z,y), provided there are at least two image attached
shadow boundaries passing through a point (z,y). Yet due to the possible nonconvexity
of the surface and the resulting cast shadows, some points may not lie on the projection
of multiple attached shadow boundaries. Furthermore, even though the surface is regular,
the visible portion of the surface may only be piecewise continuous as in Fig. 5. Never-
theless, we can still relate the surfaces f(z,y) and f'(z,y) at these points by considering
the imaged cast shadow boundaries.

Consider a point p that does not fall on more than one imaged attached shadow bound-
ary (analogous to p in Figure 5). In 3-D, it is simple to show that there are multiple light
source directions for which p lies on a cast shadow boundary, and so there is a set Q of
corresponding attached shadow points (e.g., q in Figure 5) corresponding to each light
source direction. The point p must lie in the tangent plane of each global attached shadow
boundary point q € Q, and so p, must satisfy (p — q) -n(q) = 0 for all g € Q. When
all q € Q and n(q) are transformed by some GBR, p must also be transformed by the
same generalized bas-relief transformation. In the same way, cast shadow boundaries also
establish that points of the visible surface on opposite sides of a discontinuity (e.g., p’

and q' in Fig. 5) must be related by the same GBR. |

4 Reconstruction from Attached Shadows

In the previous section, we showed that under orthographic projection with distant light
sources, the only transformation of a surface which preserves the set of imaged shadow
contours is the generalized bas-relief transformation. However, Proposition 3.1 does not
provide a prescription for actually reconstructing a surface up to GBR. In this section, we
consider the problem of reconstruction from the attached shadow boundaries measured in

n images of a surface, each illuminated by a single distant light source. We will show that

15



it is possible to estimate the n light source directions and the surface normals at a finite
number of points, all up to GBR. In general, we expect to reconstruct the surface normals
at O(n?) points. From the reconstructed normals, an approximation to the underlying
surface can be computed for a fixed GBR. Alternatively, existing shape-from-shadow
methods can be used to reconstruct the surface from the estimated light source directions
(for a fixed GBR) and from the measured attached and cast shadow boundaries [7, 4, 5, 6].

First, consider the occluding contour (silhouette) of a surface which will be denoted
Cy. This contour is equivalent to the attached shadow produced by a light source whose
direction is the viewing direction. Define a coordinate system with X and y spanning
the image plane, and with Z pointing in the viewing direction. For all points p on the
occluding contour, the viewing direction lies in the tangent plane (i.e., n(p) -z = 0), and
the surface normal n(p) is parallel to the image normal. Hence if the normal to the image
contour is (ng,n,), the surface normal is n = (ng, ny, 0)7. In RIP?, the surface normals
to all points on the occluding contour correspond to the line at infinity.

Now consider the attached shadow boundary Cj produced by a light source whose
direction is s;. See Figure 6.a. For all points p € (1, s; lies in the tangent plane, i.e.,
s; -n(p) = 0. Where C] intersects the occluding contour, the normal n; can be directly
determined from the measured contour as described above. It should be noted that
while C; and the occluding contour intersect transversally on the surface, their images
generically share a common tangent and form the crescent moon image singularity [28].
Note that by measuring n; along the occluding contour, we obtain a constraint on the
light source direction, s; - n; = 0. This restricts the light source to a line in IRIP? or to a
great circle on the illumination sphere S2?. The source s; can be expressed parametrically

in the camera coordinate system as

51(91) = COS 911’11 + sin 012

where 6; is unknown. From the shadows in a single image, it is not possible to further

constrain s; nor does it seem possible to obtain any further information about points on
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Ci. Hence, we need to consider the shadows in additional images, and we shall see that
only two more unknowns need to be introduced (6, and 6;), and these unknowns amount
to the GBR parameters.

Now, consider a second attached shadow boundary C5 formed by a second light source
direction sy. Again, the measurement of ny (where C; intersects Cp) determines a projec-
tive line in IRIP? (or a great circle on S?) that the light source s, must lie on. In general,
C; and C5 will intersect at one or more visible surface points. If the object is convex and
the Gauss map is bijective, then they only intersect at one point p; . For a nonconvex
surface, C; and Cy may intersect more than once. However in all cases, the direction of

the surface normal n; 5 at the intersections is
ngs = s1(61) X s2(92). (7)

Thus from the attached shadows in two images, we directly measure n; and n, and obtain
estimates for n; ,, s, and s, as functions of §; and 6,.

Consider a third image illuminated by s3, in which the attached shadow boundary Cj
does not pass through p;» (Fig. 6.a). Again, we can estimate a projective line (great
circle on S?) containing s3. We also obtain the surface normal at two additional points,
the intersections of C; with C; and C,. From the attached shadow boundaries for a
convex surface measured in n images — if no three contours intersect at a common point
— the surface normal can be determined at n(n — 1) points as a function of n unknowns
f;,i=1...n.

However, the number of unknowns can be reduced when three contours intersect at a
common point. Consider Fig. 6.b where contour Uy intersects C; and C at p;2. In this
case, we can infer from the images that s;,s; and s4 all lie in the tangent plane to p; .
In IRIP?, this means that sq,Ss,ss all lie on the same projective line. Since n4 can be

measured, s, can be expressed as a function of #; and 6, i.e.,

$4(01,65) = mny x (s1(61) X s9(62)).
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Thus, a set of attached shadow boundaries (Cy, Cs, Cy in Fig. 6.b) passing through a
common point (p;,2) is generated by light sources (s, S3, S4 in Fig. 6.d) located on a great
circle of S2. The light source directions can be determined up to two degrees of freedom 6,
and 6,. Now, if in addition a second set of light sources lies along another projective line
(the great circle in Fig 6.d containing si, s3, Sg, S7), the corresponding shadow contours
(Cy, Cs,Cs, Cr in Fig 6.c) intersect at another point on the surface (p;,3). Again, we can
express the location of light sources (sg, S7) on this great circle as functions of the locations

of two other sources (s; and s3):

si(91,03) =1n; X (Sl<01) X S3(03)).

Since s; lies at the intersection of both projective lines, we can estimate the direction
of any light source located on either line up to just three degrees of freedom 6, 65, and 5.
Furthermore, the direction of any other light source (sg on Fig. 6.d) can be determined
if it lies on a projective line defined by two light sources whose directions are known up
to 01,02 and A3. From the estimated light source directions, the surface normal can be
determined using Eq. 7 at all points where the shadow boundaries intersect. As mentioned
earlier, there are O(n?) such points — observe the number of intersections in Fig. 6.c. Tt
is easy to verify algebraically that the three degrees of freedom 6,6, and 63 correspond
to the degrees of freedom in GBR g1, g» and g3. The translation g, of the surface along

the line sight cannot be determined under orthographic projection.

5 Discussion

We have defined notions of shadow equivalence for object, showing that two objects
differing by a four parameter family of projective transformations (GPBR) are shadow
equivalent under perspective projection. Furthermore, under orthographic projection, two
objects differing by a generalized bas-relief (GBR) transformation are strongly shadow

equivalent — i.e., for any light source illuminating an object, there exits a light source
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illuminating a transformed object such that the shadows are identical. We have proven
that GBR is the only transformation having this property. While we have shown that
the occluding contour is also preserved under GPBR and GBR, it should be noted that
image intensity discontinuities (step edges) arising from surface normal discontinuities or
albedo discontinuities are also preserved under these transformations since these points
move along the line of sight and are viewpoint and (generically) illumination independent.
Consequently, edge-based recognition algorithms should not be able to distinguish objects
differing by these transformations, nor should edge-based reconstruction algorithms be
able to perform Euclidean reconstruction without additional information.

In earlier work where we concentrated on light sources at infinity [12], we showed that
for any set of point light sources, the shading as well as the shadowing on an object with
Lambertian reflectance are identical to the shading and shadowing on any generalized
bas-relief transformation of the object, i.e., the illumination cones are identical [30]. This
implies that a surface can only be reconstructed up to GBR when the light sources are
unknown or as Fan and Wolff’s showed, that one can recover the Hessian of a surface
from unknown multiple light sources and integrability [31]. These results are consistent
with the effectiveness of well-crafted relief sculptures in conveying a greater sense of the
depth than is present; see [12] for connections of GBR to relief sculpture. It is clear that
shading is not preserved for GPBR or for GBR when the light sources are proximal; the
image intensity falls off by the reciprocal of the squared distance between the surface
and light source, and distance is not preserved under these transformations. Nonetheless,
for a range of transformations and for some sets of light sources, it is expected that the
intensity may only vary slightly.

Furthermore, we have shown that it is possible to reconstruct a surface up to GBR from
the shadow boundaries in a set of images; obviously such reconstruction does not depend
upon the material characteristics (e.g., Lambertian model) of the surface. To implement
a reconstruction algorithm based on the ideas in Section 4 requires detection of cast

and attached shadow boundaries. While detection methods have been presented [32,
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33, 34], it is unclear how effective these techniques would be in practice. In particular,
attached shadows are particularly difficult to detect and localize since for a Lambertian
surface with constant albedo, there is a discontinuity in the intensity gradient or shading
flow field, but not in the intensity itself. On the other hand, there is a step edge at a
cast shadow boundary, and so extensions of the method described in Section 4 which
use information about cast shadows to constrain the light source direction may lead to
practical implementations.

Finally, Helmholtz [35] has shown that for binocular stereopsis, when the baseline/vergence
of the two cameras varies, but the image pair is the same, there is a corresponding trans-
formation of the scene. (See also related work by Koenderink and Van Doorn [36].) When
the baseline/vergence is unknown, this leads to a shape ambiguity which is a subgroup
of GPBR. It would be interesting to consider the relations between this stereo ambiguity,
the shadow ambiguities considered here along with the motion and shading ambiguities

considered in [12].
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List of Figures

1 An illustration of the effect of applying a generalized perspective bas-relief (GPBR)
transformation to a scene composed of a teapot resting on a supporting plane.
The first image shows the original teapot. The second image shows the teapot
after having undergone a GPBR transformation (a1, az, as,as) = (.05,.05,.05,1)
with respect to the viewpoint used to generate the first image. Note that the at-
tached and cast shadows as well as the occluding contour are identical in the first
two images. The third image shows the original teapot from a second viewpoint.
The fourth image reveals the nature of the GPBR transformation, showing the
transformed teapot from the second viewpoint. . . . . . . . .. .. oL

2 In this 2-d illustration of the generalized perspective bas-relief transformation
(GPBR), the lower shadow is an attached shadow while the upper one is com-
posed of both attached and cast components. A GPBR transformation has been
applied to the left surface, yielding the right one. Note that under GPBR,
all surface points and the light source are transformed along the optical rays
through the center of projection. By transforming the light source from s to s’,
the shadows are preserved. . . . . . . . . . . ... oo

3 Under orthographic projection, the image points that lie in shadow for a surface
under light source s are identical to those in shadow for a transformed surface
under light source s’. In this 2-d illustration, the lower shadow is an attached
shadow while the upper one is composed of both attached and cast components.
A generalized bas-relief transformation with both flattening and an additive
plane has been applied to the left surface, yielding the right one. . . . . . . . .

4 The relation of different spaces in the proof of Proposition 3.1. . . . . . . . . .
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Ilustration of some of the ideas in the proof of Proposition 3.1. In two dimen-
sions, consider the shadows of a nonconvex object observed under orthographic
projection with viewing direction v. Over all light source directions, only points
on the thickened arcs can fall on a visible global attached shadow boundary. The
points between the thickened arcs and the dashed horizontal lines are visible to
the observer, but there is no light source direction for which these points satisfy
the global attached shadow conditions. Nonetheless, there exist light source di-
rections for which each of these points can lie on a cast shadow boundary (e.g.,
p lies on a cast shadow boundary for light source direction s). Since p is a cast
shadow, it lies in the tangent plane to an attached shadow point q; when the
portion of the surface about q is transformed by a GBR transformation, p must
also be transformed by the same GBR transformation. Similarly, points such as
p’ and ¢ are respectively cast and attached shadow points for light source s'.
Note that p’ can also be an attached shadow boundary point. Because p’ lies
in the tangent plane to q', the same GBR that is applied to q' and its tangent
plane must be applied to p’. Hence, the two thickened arcs containing p’ and
q' must be transformed by the same GBR if they are to be strongly shadow

equivalent. . . . . . . L L L L Lo e e e e e e
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Reconstruction up to GBR from attached shadows: For a single object in fixed
pose, these figures show superimposed attached shadow contours C; for light
source direction s;. The surface normal where C; intersects the occluding contour
is denoted by n;. The normal at the intersection of C; and Cj is denoted by n; ;.
a) The three contours intersect at three points in the image. b) The three
contours meet at a common point implying that s;,s2 and s3 lie on a great
circle of the illumination sphere. c) Eight attached shadow boundaries of which
four intersect at p; 2 and four intersect at p; 3; the direction of the light sources
S1...8g and the surface normals at the intersection points can be determined

up to GBR. d) The structure of the illumination sphere S? for the light source

directions generating the attached shadow boundaries in Fig. 6.c. . . . . . . . .

27

33



Original Scene Transformed Scene Original Scene Transformed Scene
Viewpoint 1 Viewpoint 1 Viewpoint 2 Viewpoint 2
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Figure 1: An illustration of the effect of applying a generalized perspective bas-relief (GPBR)
transformation to a scene composed of a teapot resting on a supporting plane. The first image
shows the original teapot. The second image shows the teapot after having undergone a GPBR
transformation (a1, as,as,as) = (.05,.05,.05,1) with respect to the viewpoint used to generate
the first image. Note that the attached and cast shadows as well as the occluding contour are
identical in the first two images. The third image shows the original teapot from a second
viewpoint. The fourth image reveals the nature of the GPBR transformation, showing the
transformed teapot from the second viewpoint.
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Figure 2: In this 2-d illustration of the generalized perspective bas-relief transformation
(GPBR), the lower shadow is an attached shadow while the upper one is composed of both
attached and cast components. A GPBR transformation has been applied to the left surface,
yielding the right one. Note that under GPBR, all surface points and the light source are trans-
formed along the optical rays through the center of projection. By transforming the light source
from s to s', the shadows are preserved.
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Figure 3: Under orthographic projection, the image points that lie in shadow for a surface
under light source s are identical to those in shadow for a transformed surface under light source
s’. In this 2-d illustration, the lower shadow is an attached shadow while the upper one is
composed of both attached and cast components. A generalized bas-relief transformation with
both flattening and an additive plane has been applied to the left surface, yielding the right one.
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Figure 4: The relation of different spaces in the proof of Proposition 3.1.
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Figure 5: Tlustration of some of the ideas in the proof of Proposition 3.1. In two dimensions,
consider the shadows of a nonconvex object observed under orthographic projection with viewing
direction v. Over all light source directions, only points on the thickened arcs can fall on
a visible global attached shadow boundary. The points between the thickened arcs and the
dashed horizontal lines are visible to the observer, but there is no light source direction for
which these points satisfy the global attached shadow conditions. Nonetheless, there exist light
source directions for which each of these points can lie on a cast shadow boundary (e.g., p
lies on a cast shadow boundary for light source direction s). Since p is a cast shadow, it lies
in the tangent plane to an attached shadow point q; when the portion of the surface about
q is transformed by a GBR transformation, p must also be transformed by the same GBR
transformation. Similarly, points such as p’ and q' are respectively cast and attached shadow
points for light source s’. Note that p’ can also be an attached shadow boundary point. Because
p’ lies in the tangent plane to q', the same GBR that is applied to q' and its tangent plane must
be applied to p’. Hence, the two thickened arcs containing p’ and q' must be transformed by
the same GBR if they are to be strongly shadow equivalent.
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Figure 6: Reconstruction up to GBR from attached shadows: For a single object in fixed pose,
these figures show superimposed attached shadow contours C; for light source direction s;. The
surface normal where C; intersects the occluding contour is denoted by n;. The normal at the
intersection of C; and C; is denoted by n; ;. a) The three contours intersect at three points in
the image. b) The three contours meet at a common point implying that s;,s2 and s3 lie on
a great circle of the illumination sphere. c) Eight attached shadow boundaries of which four
intersect at p;2 and four intersect at p;3; the direction of the light sources s;...sg and the
surface normals at the intersection points can be determined up to GBR. d) The structure of the
illumination sphere S? for the light source directions generating the attached shadow boundaries
in Fig. 6.c.
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