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Abstract

We derive precise conditions under which material re-
flectance properties may be estimated from a single image
of a homogeneous curved surface (canonically a sphere), lit
by a directional source. Based on the observation that light
is reflected along certain (a priori unknown) preferred direc-
tions such as the half-angle, we propose a semiparametric
BRDF abstraction that lies between purely parametric and
purely data-driven models. Formulating BRDF estimation
as a particular type of semiparametric regression, both the
preferred directions and the form of BRDF variation along
them can be estimated from data.

Our approach has significant theoretical, algorithmic and
empirical benefits, lends insights into material behavior and
enables novel applications. While it is well-known that fitting
multi-lobe BRDFs may be ill-posed under certain conditions,
prior to this work, precise results for the well-posedness of
BRDF estimation had remained elusive. Since our BRDF
representation is derived from physical intuition, but relies
on data, we avoid pitfalls of both parametric (low generaliz-
ability) and non-parametric regression (low interpretability,
curse of dimensionality). Finally, we discuss several applica-
tions such as single-image relighting, light source estimation
and physically meaningful BRDF editing.

1. Introduction
Objects in the natural world exhibit diverse appearances

due to the wide variety in underlying material reflectance.
This is encoded by the bidirectional reflectance distribu-
tion function (BRDF), which relates incoming and outgo-
ing directions of light transport. Parametric models of the
BRDF such as Blinn-Phong and Torrance-Sparrow have
been widely studied in the vision and graphics communities
[1, 21]. While parametric models are inspired by physics
and mimic material appearance reasonably well, there has
been an emphasis in recent years on purely data-driven rep-
resentations to achieve closer conformity to empirical ob-
servations [16, 20]. However, the high dimensionality of
the BRDF space necessitates a large amount of data. More
importantly, it is not clear under what conditions one may
expect generic nonparametric methods to produce unam-
biguous results. Even for multi-lobe parametric models like
Cook-Torrance [4], optimization is challenging [24] and it is
unclear when an unambiguous fit can be achieved.

In this paper, we focus on BRDF estimation from a single
image of a sphere, or more generally a curved surface of
known geometry and homogeneous reflectance, lit by a di-
rectional source. Rather than purely parametric (potentially

inaccurate) or purely data-driven (potentially ill-posed for fit-
ting), this paper suggests the viability of semiparametric ap-
proaches for estimating material reflectance properties from
a single image. The empirical observation that motivates
our approach is that, for most materials, light is reflected
along certain preferred directions. These directions, as well
as the behavior of light reflection about them, may vary with
material type and must be estimated from the data. As a
comparison, parametric models of the BRDF assume that
both these directions (half-angle, back-scatter direction and
so on), as well as the form of the distribution (Gaussian,
Beckmann and so on) are precisely known. As opposed to
general nonparametric regression approaches, we make the
physically valid observation that the reflectance is a sum of
(unknown) univariate non-linear functions, acting on projec-
tions of the surface normal on a few (unknown) directions.

Our approach has significant theoretical, algorithmic and
practical benefits. While our formulation is physically valid
and encompasses traditional parametric models, it makes
minimal assumptions on the shape and orientation of the
involved distributions. Yet, in Section 4, we show that a
number of insights into BRDF estimation from a single
image may be derived. For instance, we show that estimating
reflectance functions with unknown lights or mixture models
is inherently ill-posed. But when there is a backscatter in
the source direction, the problem becomes well-posed. With
known lights, we show that BRDFs with one or two specular
lobes, oriented along unknown directions, may be estimated
uniquely. To the best of our knowledge, this is the first set of
results that exactly specifies the estimability of BRDFs.

Note that the uniqueness and ambiguity conditions that
we outline are inherent in the BRDF estimation problem and
independent of actual choice of estimation procedure. But
from an algorithmic perspective, our semiparametric BRDF
model is a natural fit to statistical data-fitting techniques like
projection pursuit regression. Since the link functions acting
on each projection are univariate, such methods avoid the
curse of dimensionality in nonparametric regression.

In Section 6, we show that leveraging the physical struc-
ture of BRDFs lends insights which may be difficult to ob-
tain with generic functional regression. Exploiting physical
intuition also enables novel applications like single-image
relighting, light source estimation and BRDF editing.

To summarize, our semiparametric outlook on material
behavior leads to the following fundamental contributions:

• Precise conditions may be derived under which single-
image BRDF estimation is well-posed.
• Only the most basic physical conditions are required

to be satisfied, so closer fits to empirical data may be
achieved than possible with parametric models.



• Physically-based modeling avoids the curse of dimen-
sionality inherent in nonparametric estimation.
• Exploiting physical intuition lends insights into mate-

rial behavior and enables novel applications.

2. Related Work
Parametric models of reflectance have a long history in

computer graphics and vision [1, 21]. We refer the reader
to recent empirical studies like [18] that compare various
models. There has been prior work on estimating parametric
reflectance models from single images, such as [2, 25]. As
opposed to these methods, we do not explicitly define the
functions that form our BRDF models.

Purely data-driven representations of reflectance have also
been enabled by the availability of comprehensive BRDF
databases [16]. More closely related to our work are nonpara-
metric approaches such as [20], which estimate reflectance
from a single image under environment lighting, by exploit-
ing the bilinearity of the reflectance and illumination. But it
is difficult to derive significant insight into material proper-
ties through nonparametric estimation of higher-dimensional
functions and it is as yet unknown under what conditions
that problem is ill-posed. In contrast, we use directional
lights, estimate only univariate functions and derive precise
conditions for well-posedness.

Semiparametric models of spatially varying BRDF for
interactive editing have been proposed in [14], where the
reflectance functions are unknown, but the directions are
known. Our formulation may also be related at a high level
to recent approaches like [17] that factor the BRDF into
incoming and outgoing directions as precomputation and
recombine them for rendering.

We derive inspiration from works on identifiability of
additive models [26, 9], but our theory holds for the 2-sphere
S2, rather than R3. Our algorithms belong to the class of pro-
jection pursuit regression [6], where the regression surface
is modeled as a sum of general smooth functions of linear
combinations of predictor variables (in our case, components
of the surface normal). This can also be considered as a gen-
eralized version of independent components analysis [11]
and blind source separation, with the number of components
not restricted to be equal to the predictor dimension.

3. Representation
Notation: We will denote unit vectors as α and unnor-
malized vectors as α̃. Unless stated otherwise, a vector is
assumed to be a 3-vector. The i-th component of a vector
is denoted as αi, not to be confused with αi, which is a
3-vector. Functions are denoted as f(·) and unless stated
otherwise, they are univariate and defined on non-negative
reals, that is, f : R+ → R+. We reserve the notations n,
s, v and h for, respectively, the directions of the surface
normal, light source, camera and half-angle bisector of the
source and camera (all unit vectors). We denote the unit
vector with the i-th component equal to 1 as ei.
Setup: We will henceforth assume that we have available a
single image of an object of known geometry (say, a sphere),
illuminated by a single directional point light source. Note
that dependence of the BRDF exclusively on the source
and view may be ignored for estimation in a single-image

setup, since it remains constant over the whole hemisphere of
visible surface normals. (Thus, for instance, the dependence
of the geometric term of microfacet models on h>v is often
inconsequential for some applications.)

Now, it is reasonable to assume that the reflectance is a
function of the interaction of the surface normal with various
(a priori unknown) directions, whose exact form is deter-
mined by intrinsic material properties. Note that while this
setup restricts us to a slice of the BRDF, we do estimate
complete reflectance functions allowing synthesis of images
with novel lighting and viewpoints.

BRDF Abstraction: It is also a common observation that
a BRDF is composed of a sum of “lobes” – that is, there exist
certain preferred directions along which the reflectance func-
tion is “concentrated”. As the normal deviates away from
such a direction, the contribution of that lobe to the reflected
intensity diminishes monotonically. Thus, the BRDF can be
intuitively represented as a sum of univariate functions:

ρ(n) =
∑K
i=1 fi(α

>
i n), (1)

where αi are some directions, that is, ‖αi‖ = 1. The goal of
BRDF estimation now becomes determining the directions
αi and the functions fi.

In parametric models of the BRDF, αi usually corre-
spond to s, v and h. Examples of such reflectance func-
tions include Blinn-Phong (where α1 = s and α2 = h,
with f1 = constant and f2(t) = tµ) or simplified Torrance-
Sparrow models (where f2(t) = exp(−µt2)). Our formu-
lation will discover any such dependences, but also allows
for the existence of other significant directions governed by
material behavior (see Section 6).

In some cases, the BRDF may be represented as a prod-
uct of monotonic functions [17]. Then, the logarithm of
the BRDF may be written as a linear combination of mono-
tonic functions. Examples also include simplified versions
of the Torrance-Sparrow model, which model the BRDF
as a Gaussian distribution around the half-angle, or recent
statistics-based extensions such as mixtures of hemispherical
exponential power distributions [19]. The Lafortune model
[13] also fits multiple lobes to measured data, but unlike this
work, assumes their parametric forms are known.

One may also interpret the model in (1) as a generaliza-
tion of standard methods like principal components analysis
that seek linear structure in data. Instead, we are interested
in understanding a non-linear structure, with the important
restriction that the underlying functions are constant on cer-
tain hyperplanes. For this reason, the functions fi are also
referred to as ridge functions.

For a physically valid BRDF, the functions fi(·) must
satisfy certain technical conditions:

(L1) The domain of each fi is the real closed interval [0, 1].
(L2) Each fi is non-negative, that is, fi ≥ 0.
(L3) Each fi is strictly monotonic, that is, f ′i > 0.
(L4) Each fi passes through the origin, that is, fi(0) = 0.

Note that (L2), (L3) and (L4) together mean fi(y) > 0 for
any y ∈ (0, 1] ⊂ R. Indeed, many aspects of our theory hold
true for this weaker condition than (L3), but we continue
to assume monotonicity to match physical intuition. Unless



explicitly stated, for the sake of brevity, we will refer to a
“strictly monotonic” function as just “monotonic”.

It is known in functional analysis that any “nice” function
can be represented to arbitrary precision using a model such
as (1), thus, our modeling is always valid [5]. So, it is not sur-
prising that reflectance functions may also be represented as
such. However, the intuitive property of reflectance functions
that we seek to exploit, namely monotonic behavior along
preferred projections, has two important consequences.

• Low computational burden (Section 5): since the re-
flectance data is already aligned along certain direc-
tions, the number of ridge functions required, K, is
very small, typically, two or three.
• Uniqueness (Section 4): monotonicity places strong

constraints on the model that guarantees uniqueness,
regardless of the actual estimation method.

4. Uniqueness of BRDF Estimation
In this section, we derive precise conditions when the

general BRDF of (1) can be unambiguously estimated from
data, using a single image. Note that we must determine the
directions αi and the functions fi(·) to estimate the BRDF.

4.1. 1-D BRDF
Let us begin with the simplest case of a 1-D BRDF. Exam-

ples of 1-D BRDFs include a Lambertain reflectance, or an
arbitrary isotropic BRDF with a colocated source and sensor.
Given a single image of, say, a sphere, with 1D reflectance
f(α>n), we show that both f(·) and α can be determined:

Proposition 1. Given that the BRDF is 1-D, it can be
uniquely determined using a single image.

Proof. Assume to the contrary that there exist β and mono-
tonic g(·), distinct from α and f(·), such that for all n ∈ S2

f(α>n) = g(β>n). (2)

For some constant c ∈ [0, 1), consider the circle on the
Gauss sphere given by Ωα = {n ∈ S2 : α>n = c}.
Clearly, f(α>n) = f(c) = constant on Ωα. Since β 6= α,
there must exist n1,n2 ∈ Ωα, such that β>n1 6= β>n2.
Since g(·) is a monotonic function, it must be true that
g(n>1 β) 6= g(n>2 β), whereby (2) contradicts the fact that
f(·) is constant on Ωα.

Thus, by a suitable estimation procedure, one may un-
ambiguously determine α and f(·) to estimate the BRDF.
While the above result will be utilized in the subsequent
sections, note that it does not preclude the fact that a 1-D
BRDF might be representable as a sum of many functions.
That is established in the following result:

Proposition 2. A 1-D BRDF is uniquely determinable.

Proof. Assume that there exist βi, i = 1, · · · ,K, for some
K ≥ 1, such that the BRDF has an alternate expression

f(α>n) =
∑K
i=1 gi(β

>
i n). (3)

Note that non-uniqueness requires at least one βi 6= α. Let
A be an invertible 3× 3 transformation whose first column

is α. For x = A>n and γi = A−1βi, the above relation
transforms to f(x1) =

∑K
i=1 gi(γ

>
i x).

Let ei be the unit vector with the i-th component equal
to 1. For x = e2 and x = e3, we note that the LHS is
f(0) = 0. Since gi(y) = 0 only for y = 0, it must be
true that γ>i e2 = γ>i e3 = 0. That is, γi = e1, for all
i = 1, · · · ,K. Thus, the decomposition (3) reduces to the
trivial one, f(x1) =

∑K
i=1 gi(x1), which is a contradiction

of the assumption that at least one βi is not the same as α.
Thus, a 1-D BRDF is uniquely determinable.

4.2. Some Basic Restrictions
In this section, we present some basic restrictions that

must be satisfied by BRDFs of form (1) for them to be
uniquely estimable. The remarks in this section are well-
known for general semiparametric regression [5, 9, 26], but
for BRDF estimation, they are also reasonable from a physi-
cal point of view.

We begin by noting that, for any vectors α̃′, β̃′ such that
α̃′ + β̃′ = α + β, we have α̃′>n + β̃′>n = α̃>n + β̃>n.
Thus, we remark:

Remark 1. For a BRDF of form (1) to be estimable, at most
one term can be diffuse.

The following two conditions must also hold:

Remark 2. For a BRDF of form (1) to be estimable, at most
one of the fi can be quadratic.

Remark 3. A BRDF of form (1) might not be estimable
when the directions αi are linearly dependent.

We refer the reader to [9] for the simple proofs, but note
that Remark 2 is an important restriction, since it is common
in prior work to approximate BRDFs as Gaussian mixture
models. In our theory, when considering logarithms, the
behavior of at most one lobe may be modeled as Gaussian.
Further, it follows from Remark 3 that BRDFs guaranteed
to be estimable can be at most 3-lobe. Again, note that this
condition is required only to guarantee determinability of
the BRDF. It is possible for the directions to be linearly
dependent while the BRDF remains uniquely estimable.

Next, we analyze the special case of dichromatic BRDFs
similar to half-angle models like Blinn-Phong or Torrance-
Sparrow (but with unknown directions and functions).

4.3. 1-lobe (Or Dichromatic) BRDFs
In many cases, such as a Blinn-Phong BRDF, we know

that the diffuse component is a linear function of the surface
normal. Thus, such BRDFs may be written as

ρ(n) = α̃>n + f(β>n) (4)

where α̃ ∈ R3, β ∈ S2 and f is some monotonic, non-linear
function. Further, α̃ and β are linearly independent, else the
model reduces to a 1-D BRDF.

In practice, we know that α corresponds to the light
source direction. It is empirically known that the specular
lobe points away from the light direction, so it is valid to
assume linear independence of α̃ and β. From Proposition
1, we know that f has to be a non-linear function for the



model to be uniquely defined. Again, this is a physically
valid assumption, since the specular lobe of a half-angle
BRDF model is known to be non-linear (that is, behaves in a
more sharply-peaked fashion than the diffuse component).

Proposition 3. For an unknown light source, the model in
(4) is ambiguous.

This can be easily seen by noting that

α̃>n + f(β>n) = γ̃>n + g(β>n), (5)

where g(β>n) = kβ>n + f(β>n) and γ̃ = α̃ − kβ.
However, note that the direction β may still be uniquely
recoverable.

Proposition 4. For a known light source direction and
strength, the model in (4) is not ambiguous.

Proof. Suppose the light source direction is α and strength
c1. Let us assume to the contrary that the model is am-
biguous. Then, there exist directions β,γ and univariate
monotonic functions f, g, not all of them identical, such that

α̃>n + f(β>n) = α̃>n + g(γ>n). (6)

But this violates Proposition 1, so the model is unambiguous.

In practice, it is easy to determine the light source direc-
tion, but not the strength. However, it can be shown that it
only suffices to know the light source direction in order for
the model in (4) to be uniquely defined.

Proposition 5. For a light source at a known direction, but
of unknown strength, the model in (4) is not ambiguous.

Proof. Suppose the light source direction is α. Then, let us
assume to the contrary that the model is ambiguous. Then,
there exist constants c1, c2, directions β,γ and univariate
monotonic functions f, g, not all of them identical, such that

c1α
>n + f(β>n) = c2α

>n + g(γ>n). (7)

Suppose c1 = c2. Then, we must have f(β>n) = g(γ>n),
where at least one of β 6= γ and f 6= g must be true. But
that will violate Proposition 1, thus, we must have c1 6= c2.

Without loss of generality, let c = (c1 − c2) > 0. Then,

cα>n + f(β>n) = g(γ>n). (8)

Consider the vector n0⊥span(α,β). Then, we must have
α>n0 = 0 and β>n0 = 0. So, f(β>n0) = 0 and from
(8), we must have g(γ>n0) = 0. Since g is monotonic
with g(0) = 0, this is only possible if γ>n0 = 0, that
is, γ ∈ span(α,β). Thus, we may write cα = aβ − bγ,
whereby (8) becomes

aβ>n + f(β>n) = bγ>n + g(γ>n). (9)

Now, consider the transformation of variables given by
x = A>n, where A = [β,γ, e3]. Recall our notation,
where e3 = (0, 0, 1)>. Then, we may rewrite (9) as

ax1 + f(x1) = bx2 + g(x2). (10)

Since x1 and x2 are independent variables, this is only pos-
sible if f(y) = −ay + c0 and g(y) = −by + c0, for some
constant c0. This is a contradiction, since we know that f
is a non-linear function. Thus, the model in (4) is uniquely
determined when the source direction is known.

4.4. General 2-lobe BRDFs
A general 2-lobe BRDF has the form

ρ(n) = f1(α>1 n) + f2(α>2 n), (11)

where α1,α2 are linearly independent and both f1, f2 are
non-linear, non-quadratic functions. Note that we have al-
ready considered the cases where these functions are linear
or quadratic in the previous section.

Also, recall that all the functions we are considering cor-
respond to physical BRDFs, so they are constrained to be
non-negative, passing through the origin and monotonic.
That is, fi ≥ 0, fi(0) = 0 and f ′i > 0.

In order to prove the uniqueness conditions for estimation
of a 2-lobe BRDF, following [26], we use an auxiliary lemma
from probability theory.

Lemma 1 (Khatri and Rao). For linearly independent vec-
tors αi ∈ Rn, any unknown functions fi : R → R and
gj : R→ R that satisfy the relation∑m

i=1 fi(α
>
i x) =

∑n
j=1 gj(xj) (12)

over the domain {x ∈ Rn : |xj | < r, j = 1, · · · , n}, for
some r > 0, must be polynomials of degree at most 2.

For a proof, we refer the reader to [12]. Notice the do-
main of the equation in the above lemma, which is an open
subset of Rn. Such generality of the domain is often an im-
portant requirement for functional analysis. In contrast, for
the problems that are encountered in BRDF estimation, the
domain of definition for the surface normals is the closed set
S2 with no interior, so unlike [26], the above result cannot
be applied in a straightforward manner.

Yet, given the above lemma, we can prove the following:

Proposition 6. A general 2-lobe BRDF of the form in (11)
is always uniquely determined by a single image.

Proof. Assume to the contrary that there exist functions gi
and directions βi, where 1 ≤ i ≤ K, such that

f1(α>1 n) + f2(α>2 n) =
∑K
i=1 gi(β

>
i n). (13)

Since α1,α2 are linearly independent, there exists a 3× 3
matrix A, such that A−1 [α1,α2] = [e1, e2], where ei is
the unit vector with the i-th component equal to 1. Let us
define x = A>n and γi = A−1βi, for i = 1, · · · ,K.

We consider the particular choice A = [α1,α2, e3].
Then, if Q is the domain of x, we note that e3 ∈ Q. Now,
we can rewrite (13) as

f1(x1) + f2(x2) =
∑K
i=1 gi(γ

>
i x). (14)

Substitute x = e3. Then, the LHS is f1(0) + f2(0) = 0. For
the RHS to be also 0, since the gi are non-negative functions,
it must be true that γ>i e3 = 0 for all i = 1, · · · ,K. Thus,
γi ∈ span(e1, e2) and we may express γi = [pi, qi, 0]>, for
all i = 1, · · · ,K. Now, we can rewrite (14) as

f1(x1) + f2(x2) =
∑K
i=1 gi(pix1 + qix2). (15)



Let Q′ ⊂ R2 be the domain of [n1, n2]> and Q′′ be the
domain of [x1, x2]>. Define

Br(y1, y2) = {(y1, y2)> ∈ R2 : |y1| < r, |y2| < r}. (16)

Since Br(n1, n2) ⊂ Q′ for any r <
1√
2

, it must be true that

there exists an r′ > 0, such that Br′(x1, x2) ⊆ Q′′. Then,
in accordance with the Khatri-Rao Lemma, all of fj , gi, for
j = 1, 2 and i = 1, · · · ,K are restricted to be quadratic
functions. But this contradicts the condition that the fj are
neither linear nor quadratic, so the general 2-lobe BRDF in
(11) is uniquely determined by a single image.

K-lobe BRDF, K ≥ 3: Note that we have already estab-
lished that for K > 3, uniqueness of BRDF estimation
cannot be guaranteed. It remains an open question whether
estimation of BRDF models with K = 3 lobes is well-posed.
In practice, it is known that projection pursuit with 3 or more
ridge functions is often ill-conditioned [10]. However those
results are also known only for convex subsets of R3. It has
been observed that fitting 3-lobe BRDFs can be unstable, so
we conjecture that similar ill-conditioning results may also
exist for estimation on S2.

5. Estimation Algorithms
We now indicate the wide suite of algorithms available for

single-image BRDF estimation within our framework. While
a complete comparison is beyond the scope of this paper,
these methods are well-studied in the statistics community
and we will point the reader to the relevant references.

5.1. 1-D and Phong-Like BRDFs
Nonparametric methods may be used to directly estimate

the projection direction α in a 1-D BRDF f(α>n), followed
by a LOESS regression [3]. But it is also relatively inexpen-
sive to search over the sphere for the projection direction.
We adopt the latter approach in a coarse-to-fine implementa-
tion. Projecting the covariates along each putative α, we fit
a cubic spline to minimize the energy:

min
∑N
i=1(yi − s(xi))2 + λ

∫
s′′(x)2 dx. (17)

The smoothing parameter is chosen by cross-validation. Gen-
eral cubic splines yield a good fit to data, but may not be
monotonic. It is well-known that sufficient conditions for
monotonicity of a cubic spline within each knot-interval are
guaranteed by a system of seven linear constraints [7]. Addi-
tional terms that penalize second derivative discontinuitites
can be included to ensure C2 smoothness [23].

5.2. K-lobe BRDFs, K > 1

In some cases, one may have prior knowledge of the
preferred directions along which the reflectance lobes are
centered, which reduces the problem to estimating a general-
ized additive model [8]. When such prior knowledge is not
available, one approach might be to alternate between solv-
ing for the projection directions and a neural-net regression
to estimate the link functions as sums of sigmoids.

(a) Input (b) Red (c) Green
Figure 1. With a colocated source and camera, we have a 1-D BRDF.
For gold-metallic-paint material, the estimated projection
direction is found to be within 0.7 degrees of the viewing direction,
(0, 0, 1)>. The reflectance curves obtained in the red and green
channels are shown (the curve for blue channel is similar). The
blue points represent data and the red curve is the estimated fit.

We use a more general, well-known method to simultane-
ously estimate the directions and functions that constitute a
BRDF of the form (1), namely projection pursuit [6], which
is an application of the successive refinement principle to
solve regression problems of the form:

min
α,fi
‖ρ(n)−

∑
i fi(α

>
i n)‖2. (18)

The algorithm builds each term in the model, by selecting a
direction that, for a corresponding smoothed representation
of residuals, maximizes a suitable figure of merit, such as
the fraction of unexplained variance. That is, if rj = yj −∑k
i=1 fi(α

>
i nj) are the residuals after k terms have been

fitted, the (k + 1)-th direction, αk+1, is chosen as

αk+1 = arg min

∑
j‖rj −

∑k+1
i=1 fi(α

>
i n)‖2∑

j r
2
j

. (19)

We refer the reader to [10] for an introduction and [22] for
greater details on the implementation. As is standard practice
in projection pursuit analysis, we first fit a greater number of
terms (5, in our experiments) than required, then sequentially
drop the least effective term followed by refitting. We use
a projection pursuit implementation in the R language for
statistical computing, employing the super-smoother of [6].

6. Experiments, Insights and Applications
In this section, we verify our theory on real data from

the publicly available MERL database [16]. Along the way,
we highlight two of the main advantages of our theory –
that a semiparametric approach lends insights into material
behavior, as well as towards the problem of BRDF estimation
itself. We also show auxiliary practical benefits such as
single-image relighting, BRDF editing and simultaneous
estimation of light source and reflectance.

1-D BRDF: We begin with the simplest case of 1-D
BRDFs, which are proved to be uniquely determined by
a single image in Proposition 2. In Figure 1, we consider
the input image of a gold-metallic-paint sphere, with
a colocated source and camera. We search over all directions
and show that there exists one along which the covariates
can be projected, so that a one-dimensional curve fit explains
most of the variance. Moreover, this estimated direction is
actually the camera direction, which explains why a univari-
ate function well-approximates the data.



(a) Input (b) Estimates (c) Input (d) Estimates

Figure 2. Ambiguity in 1-lobe model with unknown light source.
Note the rise in the specular red curve, corresponding to the half
angle, even for low values of n>h. This is because the diffuse and
specular terms interact in (5).

Plastics: Shiny plastics are well-approximated by a 1-lobe
model, centered around the half-angle. First, we verify
Proposition 3 that the estimation is ambiguous with unknown
source direction. This is shown for the green-plastic and
gray-plastic materials in Figure 2.

Application 1 - Light source estimation: Even though the
reflectance curves are ambiguous in Figure 2, we note that
the direction of non-linear dependence (β in Proposition 3)
can be accurately recovered. Thus, knowing that the ma-
terial is expected to follow a 1-lobe half-angle model, we
may estimate the light source direction. This is of significant
practical interest, since light source directions are hard to
calibrate and even an error of one or two degrees can in-
troduce substantial errors in BRDF measurements. For the
green-plastic and gray-plastic materials in Figure 2,
the estimated light source directions are [1.004, 1.006, 1]>

and [1.004, 1.008, 1]>, which are 0.19 and 0.14 degrees
away from the “calibrated” direction [1, 1, 1]>.

Application 2 - Relighting: With known light source direc-
tion, from Proposition 5, the reflectance curves as well as the
direction of projection may be estimated from data. In Fig-
ure 3, we use the method of Section 5.1 to estimate both β
and f(·) in (4) for the violet-acrylic material, thereby
verifying Proposition 5. We observe that, as expected, the
shape of the reflectance curves remain constant across light
source directions. This constancy, together with the fact that
the estimated directions are physically meaningful, allows
us to predict appearance under novel lighting.

Figure 4 shows the relighting application for the
specular-yellow-phenolic material. As a compari-

(a) Input (b) Red (c) Green (d) Blue
Figure 3. For a violet-acrylic sphere, no significant change
in the error is found between one and two projection directions.
So, we fit a 1-lobe model. The estimated projection direction is
found to be within 3 degrees of the half-angle. The top row shows
an input image under light source (1, 1, 1)> and the bottom row
under (−1, 1, 1)>. The estimated curves in each case are found to
be nearly identical. We can use this fact to predict the appearance
under novel lighting configurations.

(a) Input (b) Relighting (c) Ground truth (d) Error
Figure 4. Relighting from a new light source direction for
the specular-yellow-phenolic material. The prediction
closely matches the ground truth appearance, the error shown is
scaled 3 times for visualization (brighter represents higher error).

(a) Input (b) Prediction (c) Ground truth (d) T-S Model

Figure 5. Given input from source at (1, 1, 1)>, in (b) we predict
from a new light source direction (−1, 1, 1)>. The ground truth is
shown in (c). Note the accuracy of our estimate in both the specular
highlight and far from it, relative to a parametric fit (d).

son, we also show the inferior prediction using a simplified
Torrance-Sparrow model for green-metallic-paint in
Figure 5. For a red-phenolic material, Figure 6 shows
the 1-term PPR fit and relighting of a complex geometry.

Paints: In Figure 7(c), we show an input image for the
ipswich-pine-221 material in the MERL database, im-
aged under an oblique light source (10, 10, 1)>. The esti-

(a) 1-lobe PPR fit (b) Input: (1, 1, 1)> (c) 1-lobe T-S fit

(d) PPR predict (e) Ground: (−2, 3, 1)> (f) T-S predict

(g) PPR error (h) Relight: (−2, 3, 1)> (i) T-S error

Figure 6. Given an image of a red-phenolic sphere with light-
ing direction (1, 1, 1)> (b), a 1-lobe simplified Torrance-Sparrow
fit (c) shows slightly greater variance than a 1-term PPR (a). The
Torrance-Sparrow prediction of the appearance under a light source
at (−2, 3, 1)> is reasonable (f). But using the method of Section
5.1, the prediction (d) clearly matches the ground truth (e) better,
both in the highlight and diffuse regions. The corresponding er-
rors are shown in (i) and (g), scaled 3 times for visualization, with
brighter colors representing higher error. The predicted image for a
complex geometry is shown in (h).



(a) 1-lobe fit (b) 2-lobe fit (c) Ground truth: (10, 10, 1)>

(d) 1-lobe error (e) 2-lobe error (f) Ground truth (−1, 1, 1)>

(g) 1-lobe BRDF (h) 2-lobe BRDF (i) Predict: (−1, 1, 1)>

Figure 7. For paints such as ipswich-pine-221 under oblique
illumination, we expect significant backscatter. Compare the vari-
ance in the 1-lobe fit in (g) with that of highly specular materials
in Figures 3 and 4. A projection pursuit assuming unknown light
source converges to directions very close to the half-angle and light
source (h). Both (d) and (e) are rescaled to 3 times their actual
values for better visualization. Please see the text for details.

(a) Input: (25, 25, 1)>(b) Relight: (−1, 1, 1)>(c) Relight: (−1, 1, 1)>

Figure 8. For a natural-209 sphere illuminated from
(25, 25, 1)> (a), 2-term PPR yields projection directions as h and
s. Average relative error is 2.61%. This is used to relight simple
(c) and complex (d) geometries under novel lighting (−1, 1, 1)>.

mated best projection direction, assuming a 1-lobe BRDF
with known light source, is found to be close to the half-
angle. But as seen in Figure 7(g), the data lies far from a 1-D
distribution (compare to the fits for sharply specular plastic
materials in Figures 3 and 4). The mean relative error (d) in
the estimated 1-lobe fit (a) is found to be 4.76%.

This high error is expected for paint materials similar
to wood lacquer, which may show noticeable backscatter
towards the light source. Incidentally, this phenomenon is
also the motivation for BRDF models used in Neumann-
Neumann shaders. Now, since we expect a non-linearity
in the light source direction, we can assume that the light
source direction is unknown and perform a projection pursuit
regression to find the best-fitting 2-lobe BRDF. The best
projection directions are found to be within 2 degrees of the
ground truth half-angle and the light source. The estimated
reflectance curves are shown in Figure 7(h). The mean
relative error (e) in the estimated 2-lobe fit (b) is found to be
2.14%. Finally, using the 2-lobe fit, we can also predict the

(a) Input:(25, 25, 1)> (b) Relight:(−1, 1, 1)> (c) 2-term PPR

(d) Edit function (e) Edit direction (f) Edit both

Figure 9. Examples of editing the appearance of objects with com-
plex geometry. An advantage of our approach is that both the direc-
tions and functions that determine the BRDF can be edited to create
novel appearances. Using an image of a special-walnut-224
sphere under oblique lighting (25, 25, 1)> (a), a 2-lobe BRDF is
estimated (c). An object with complex geometry is relighted from
a novel direction (−1, 1, 1)> (b). The glossiness in (b) is reduced
by editing the functions along the half-angle to half their value (d).
The direction of the gloss in (b) is shifted from s+v to an arbitrary
new direction s+ 0.3v (e). Both the direction and the strength of
gloss can be simultaneously edited (f).

image accurately from a very different light source direction,
(−1, 1, 1)>, as shown in Figures 7(f) and (i).

Thus, in this example, we have derived insight into the
behavior of certain paints, verified our theory in Proposition
6 and provided another demonstration of simultaneous light
source and reflectance estimation. A relighting example
on simple and complex geometries for the natural-209
material, whose BRDF shows similar characteristics as
ipswich-pine-221, is shown in Figure 8.

Application 3 - BRDF Editing: An important practical
advantage of our approach, compared to traditional methods,
is that we simultaneously estimate both the directions and
functions that determine the BRDF. Conversely, in a BRDF
editing application, we can control both the directions along
which the BRDF displays interesting behavior, as well as
the behavior of the BRDF along those directions. A simple
example where we independently edit the functions and
directions of the BRDF for the special-walnut-224
material is shown in Figure 9 (d) and (e), respectively. In
Figure 9(f), we show simultaneous editing of the functions
and directions of the material reflectance.

Synthetic and Natural Fibers: The most significant de-
viations from half-angle models were found in synthetic
fibers like polyethylene and natural ones like fabrics. Again,
this matches physical intuition, since reflectance from fibers
is complex [15]. Figure 10(a) shows a projection of the
polyethylene data along the half-angle. Rather, the most
significant direction estimated by 2-D projection pursuit was
close to 2s+v (and a second direction close to v). The corre-
sponding fit is shown in Figure 10(b). For the blue-fabric
material, shown in Figure 11, the most significant direction
was close to 4s + 3v. In all cases, two lobes were necessary
to match the observed images.



(a) Half-angle (b) 1-term PPR (c) 2-term PPR

Figure 10. (a) For synthetic fiber materials like polyethylene, a pro-
jection along the half-angle is not the best one. (b) 1-D projection
pursuit estimates the best fit direction to be 2s + v. (c) Another
term is found to exist aligned with the viewing direction. Average
relative error is 1.57%.

(a) Input: (10, 10, 1)> (b) 2-lobe PPR fit (c) 2-lobe PPR error

(d) 2-lobe BRDF (e) Relight: (−1, 1, 1)> (f) Ground: (−1, 1, 1)>

Figure 11. Given images of a blue-fabric sphere, under light
source (10, 10, 1)> (a), a 2-term PPR closely fits the data (b). The
corresponding error, scaled 3 times for visualization, is shown in
(c). Average relative error is 2.05%. The two significant directions
of the 2-lobe BRDF are α1 = 4s + 3v and α2 = 3s + 4v (d).
The directions and curves obtained from (a) are used to predict
the appearance under a new light source at (−1, 1, 1)> (e), which
closely matches the ground truth (f).

7. Discussion and Future Work
In this paper, we have specified exact conditions for

BRDF estimability using a single image under directional
lighting. Our semiparametric BRDF model is motivated by
physically valid, but minimal requirements on the form of
reflectance functions. Unlike parametric models, we achieve
good fits to data and unlike nonparametric ones, our esti-
mates are easy to interpret. We leverage powerful tools from
semiparametric regression analysis to develop general al-
gorithms, derive significant insights into material behavior
and present novel applications such as relighting, lighting
estimation and BRDF editing.

Looking ahead, it is natural to extend our models to han-
dle anisotropy, where tangent directions are also important
in determining reflectance. Relating our theoretical discov-
eries to the dual problem of shape reconstruction from a
sampling of light source directions is also an interesting
avenue. A drawback of projection pursuit regression is its
tendency to get stuck in local minima, so it is also impor-
tant to develop better estimation algorithms. Our models
retain predictive power along with physical interpretability,
so they are well-suited to drive machine learning algorithms
for material classification and scene interpretation, which
are directions we seek to explore in future work.
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