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under All Possible Illumination Conditions?

PETER N. BELHUMEUR
Center for Comp. Vision and Control, Dept. of Electrical Engineering, Yale University, New Haven CT 06520

DAVID J. KRIEGMAN
Center for Comp. Vision and Control, Dept. of Electrical Engineering, Yale University, New Haven CT 06520

Received September 17, 1996; Revised August 26, 1997

Abstract. The appearance of an object depends on both the viewpoint from which it is observed and the light
sources by which it is illuminated. If the appearance of two objects is never identical for any pose or lighting
conditions, then – in theory – the objects can always be distinguished or recognized. The question arises: What
is the set of images of an object under all lighting conditions and pose? In this paper, we consider only the set of
images of an object under variable illumination, including multiple, extended light sources, shadows, and color.
We prove that the set ofn-pixel monochrome images of a convex object with a Lambertian reflectance function,
illuminated by an arbitrary number of point light sources at infinity, forms a convex polyhedral cone inIR n and
that the dimension of thisillumination coneequals the number of distinct surface normals. Furthermore, the
illumination cone can be constructed from as few as three images. In addition, the set ofn-pixel images of an
object of any shape and with a more general reflectance function, seen under all possible illumination conditions,
still forms a convex cone inIRn. These results immediately suggest certain approaches to object recognition.
Throughout, we present results demonstrating the illumination cone representation.
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1. Introduction

One of the complications that has troubled com-
puter vision recognition algorithms is the variabil-
ity of an object’s appearance from one image to the
next. Wit1Gh slight changes in lighting conditions
and viewpoint often come large changes in the object’s
appearance. To handle this variability methods usu-
ally take one of two approaches: either measure some
property in the image of the object which is, if not
invariant, at least insensitive to the variability in the
imaging conditions, or model the object, or part of the
object, in order to predict the variability.

Nearly all approaches to object recognition have
handled the variability due to illumination by using the

first approach; they have concentrated on edges in the
images, i.e. the discontinuities in the image intensity.
Because discontinuities in the albedo on the surface
of the object or discontinuities in albedo across the
boundary of the object generate edges in images, these
edges tend to be insensitive to a range of illumination
conditions [5].

Yet, edges do not contain all of the information use-
ful for recognition. Furthermore, objects which are
not simple polyhedra or are not composed of piece-
wise constant albedo patterns often produce inconsis-
tent edge maps. The left half of Fig. 1 shows two im-
ages of a person with the same facial expression and
photographed from the same viewpoint. The variabil-
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ity in these two images due to differences in illumi-
nation is dramatic: not only does it lead to a change
in contrast, but also to changes in the configuration of
the shadows, i.e. certain regions are shadowed in the
left image, but illuminated in the right, and vice versa.
In fact, it has been observed that in face recognition,
the variability in an image due to illumination is of-
ten greater than that due to a change in the person’s
identity [20]. The edge maps in the right half of Fig. 1
are produced from these images. Due to the variation
in illumination, only a small fraction of the edges are
common between images.

The reason most approaches have avoided using the
rest of the intensity information is because its vari-
ability under changing illumination has been diffi-
cult to tame. Only recently have “appearance-based”
approaches been developed in an effort to use in-
tensity information to model or learn a representa-
tion that captures a large set of the possible images
of an object under pose and/or illumination varia-
tion [21, 25, 26, 18, 31]. These methods have gone
a long way in demonstrating the advantages of using
much richer descriptions than simply sparse features
like edges and corners for recognition.

Still, a drawback of these approaches is that in or-
der to recognize an object seen from a particular pose
and under a particular illumination, the object must
have been previously seen under the same conditions.
Yet, if one enumerates all possible poses and permutes
these with all possible illumination conditions, things
get out of hand quite quickly. This raises the question:
Is there some underlying “generative” structure to the
set of images of an object under varying illumination
and pose such that to create the set, the object does not
have to be viewed under all possible conditions?

In this paper, we address only part of this question,
restricting our investigation to varying illumination. In
particular, if an image withn pixels is treated as a
point in IRn, what is the set of all images of an ob-
ject under varying illumination? Is this set an incredi-
bly complex, but low-dimensional manifold in the im-
age space? Or does the set have a simple, predictable
structure? If the object is convex in shape and has a
Lambertian reflectance function, can a finite number
of images characterize this set? If so, how many im-
ages are needed?

The image formation process for a particular ob-
ject can be viewed as a function of pose and light-
ing. Since an object’s pose can be represented by a

Original Images

Edge Maps
Fig. 1. Effects of Variability in Illumination: The left two im-
ages show the same face seen under different illumination condi-
tions. The right two images show edge maps of the left two images.
Even though the change in light source direction is less than45�,
the change in the resulting image is dramatic.

point in IR3 � SO(3) (a six dimensional manifold),
the set of n-pixel images of an object under constant
illumination, but over all possible poses, is at most
six dimensional. Murase and Nayar take advantage
of this structure when constructing appearance mani-
folds [21]. However, the variability due to illumina-
tion may be much larger as the set of possible lighting
conditions is infinite dimensional.

Arbitrary illumination can be modeled as a scalar
function on a four-dimensional manifold of light
rays [19]. However, without limiting assumptions
about the possible light sources, the bidirectional re-
flectance density functions, or object geometry, it is
difficult to draw limiting conclusions about the set of
images. For example, the image of a perfect mirror
can be anything. Alternatively, if the light source is
composed of a collection of independent lasers with
one per pixel (which is admissible under [19]), then
an arbitrary image of any object can be constructed by
appropriately selecting the lasers’ intensities.

Nonetheless, we will show that the set of images of
an object with arbitrary reflectance functions seen un-
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der arbitrary illumination conditions is a convex cone
in IRn wheren is the number of pixels in each im-
age. Furthermore, if the object has a convex shape and
a Lambertian reflectance function, the set of images
under an arbitrary number of point light sources at in-
finity is a convex polyhedral cone inIRn, which can
often be determined from as few as three images. In
addition, we will show that while the dimension of the
illumination cone equals the number of distinct sur-
face normals, the shape of the cone is “flat,” i.e. the
cone lies near a low dimensional linear subspace of
the image space. Throughout the paper, empirical in-
vestigations are presented to complement the theoret-
ical arguments. In particular, experimental results are
provided which support the validity of the illumina-
tion cone representation and the associated proposi-
tions on the illumination cone’s dimension and shape.
Note that some results in this paper were originally
presented in [3].

We are hopeful that the proposed illumination rep-
resentation will prove useful for object recognition.
While this paper provides no implementations of such,
we believe the utility of the ideas presented in this pa-
per will ultimately be determined through application.
For problems such as face recognition, where pose is
often fixed, we are building illumination cone repre-
sentations for each individual in the database, thus al-
lowing face recognition over extreme variation in il-
lumination. For problems where pose is unknown,
we envision marrying the illumination cone represen-
tation with a low-dimensional set of image coordi-
nate transformations [32] or with the appearance man-
ifold work of [21], thus allowing both illumination and
pose variation. For problems in which occlusion and
non-rigid motion cannot be discounted, we envision
breaking the object down into sub regions and building
“illumination subcones." These illumination subcones
could then be glued together in a manner similar to the
recent “body plans" work of [10].

2. The Illumination Cone

In this section, we develop the illumination cone repre-
sentation. To start, we make two simplifying assump-
tions: first, we assume that the surfaces of objects have
Lambertian reflectance functions; second, we assume
that the shape of an object’s surface is convex. While
the majority of the propositions are based upon these
two assumptions, we will relax them in Section 2.3

and show that the set of images is still a convex cone.
In addition, the empirical investigations of Section 2.4
will demonstrate the validity of the illumination cone
representation by presenting results on images of ob-
jects which have neither purely Lambertian reflectance
functions, nor convex shapes.

2.1. Illumination Cones for Convex Lambertian Sur-
faces

To begin let us assume a Lambertian model for re-
flectance with a single point light source at infinity.
Let x denote an image withn pixels. LetB 2 IRn�3

be a matrix where each row ofB is the product of the
albedo with the inward pointing unit normal for a point
on the surface projecting to a particular pixel; here we
effectively approximate a smooth surface by a faceted
one and assume that the surface normals for the set of
points projecting to the same image pixel are identical.

Let s 2 IR3 be a column vector signifying the prod-
uct of the light source strength with the unit vector for
the light source direction. Thus, a convex object with
surface normals and albedo given byB, seen under
illumination s, produces an imagex given by the fol-
lowing equation

x = max(Bs;0); (1)

wheremax(�;0) zeros all negative components of the
vectorBs [14]. Note that the negative components of
Bs correspond to the shadowed surface points and are
sometimes calledattached shadows[28]. Also, note
that we have assumed that the object’s shape is convex
at this point to avoidcast shadows, i.e. shadows that
the object casts on itself.

If the object is illuminated byk point light sources
at infinity, the imagex is given by the superposition of
images which would have been produced by the indi-
vidual light source, i.e.

x =

kX
i=1

max(Bsi;0)

wheresi is a single light source. Note that extended
light sources at infinity can be handled by allowing
an infinite number of point light sources (i.e., the sum
becomes an integral).

The product ofB with all possible light source di-
rections and strengths sweeps out a subspace in the
n-dimensional image space [28, 13, 23]; we call the
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subspace created byB the illumination subspaceL,
where

L = fx j x = Bs;8s 2 IR3g:

Note that the dimension ofL equals the rank ofB.
SinceB is ann� 3 matrix,L will in general be a 3-D
subspace, and we will assume it to be so in the remain-
der of the paper. When the surface has fewer than three
linearly independent surface normals,B does not have
full rank. For example, in the case of a cylindrical ob-
ject, both the rank ofB and dimension ofL are two.
Likewise, in the case of a planar object, both the rank
and dimension are one.

When a single light source is parallel with the cam-
era’s optical axis, all visible points on the surface are
illuminated, and consequently, all pixels in the image
have non-zero values. The set of images created by
scaling the light source strength and moving the light
source away from the direction of the camera’s opti-
cal axis such that all pixels remain illuminated can be
found as the relative interior of a setL0 defined by
the intersection ofL with the non-negative orthant of
IRn.1

Lemma 1. The set of imagesL0 is a convex cone in
IRn.

Proof: L0 = L\fx j x 2 IRn, with all components
of x � 0g. BothL and the positive orthant are convex.
For the definition of convexity and the definition of
a cone, see [6, 27]. Because the intersection of two
convex sets is convex, it follows thatL0 is convex.

BecauseL is a linear subspace, ifx 2 L then�x
2 L. And, if x has all components non-negative, then
�x has all components non-negative for every� � 0.
Therefore�x 2 L0. So it follows thatL0 is a cone.

As we move the light source direction further from
the camera’s optical axis, points on the object will fall
into shadow. Naturally, which pixels are the image
of shadowed or illuminated surface points depends on
where we move the light source direction. If we move
the light source all the way around to the back of the
object so that the camera’s optical axis and the light
source are pointing in opposite directions, then all pix-
els are in shadow.

Let us now consider all possible light source direc-
tions, representing each direction by a point on the
surface of the sphere; we call this sphere theillumi-

nation sphere. For a convex object, the set of light
source directions for which a given pixel in the image
is illuminated corresponds to an open hemisphere of
the illumination sphere; the set of light source direc-
tions for which the pixel is shadowed corresponds to
the other hemisphere of points. A great circle on the
illumination sphere divides these sets.

Each of then pixels in the image has a correspond-
ing great circle on the illumination sphere. The col-
lection of great circles carves up the surface of the il-
lumination sphere into a collection of cellsSi. See
Figure 2. The collection of light source directions
contained within a cellSi on the illumination sphere
produces a set of images, each with the same pixels
in shadow and the same pixels illuminated; we say
that these images have the same “shadowing config-
urations.” Different cells produce different shadowing
configurations.

We denote byS0 the cell on the illumination sphere
containing the collection of light source directions
which produce images with all pixels illuminated.
Thus, the collection of light source directions from the
interior and boundary ofS0 produces the set of im-
agesL0. To determine the set of images produced by
another cell on the illumination sphere, we need to re-
turn to the illumination subspaceL.

The illumination subspaceL not only slices through
the non-negative orthant ofIRn, but other orthants in
IRn as well. LetLi be the intersection of the illumina-
tion subspaceLwith an orthanti in IRn through which
L passes. Certain components ofx 2 Li are always
negative and others always greater than or equal to
zero. EachLi has a corresponding cell of light source
directionsSi on the illumination sphere. Note thatL
does not slice through all of the2n orthants inIRn, but
at mostn(n� 1)+ 2 orthants (see the proof of Propo-
sition 1). Thus, there are at mostn(n� 1)+ 2 setsLi,
each with a corresponding cellSi on the illumination
sphere.

The set of images produced by the collection of light
source directions from a cellSi other thanS0 can be
found as a projectionPi of all points in a particular set
Li. The projectionPi is such that it leaves the non-
negative components ofx 2 Li untouched, while the
negative components ofx become zero. We denote the
projected set byPi(Li).

Lemma 2. The set of imagesPi(Li) is a convex
cone inIRn.
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Fig. 2. The Illumination Sphere: The set of all light source direc-
tions can be represented by points on the surface of a sphere; we call
this sphere theillumination sphere. Great circles corresponding to
individual pixels divide the illumination sphere into cells of differ-
ent shadowing configurations. The arrows indicate the hemisphere
of light directions for which the particular pixel is illuminated. The
cell of light source directions which illuminate all pixels is denoted
by S0. The light source directions withinS0 produceL0 the set of
images in which all pixels are illuminated. Each of the other cells
produce theLi, 0 < i � n(n � 1) + 1. The extreme rays of
the cone are given by the images produced by light sources at the
intersection of two circles.

Proof: By the same argument used in the proof of
Lemma 1,Li is a convex cone. Since the linear projec-
tion of a convex cone is itself a convex cone,P i(Li) is
a convex cone.

SincePi(Li) is the projection ofLi, it is at most
three dimensional. EachPi(Li) is the set of all im-
ages such that certain pixels are illuminated, and the
remaining pixels are shadowed. The dual relation
betweenPi(Li) and Si can be concisely written as
Pi(Li) = f�max(Bs;0) : � � 0; s 2 Sig and
Si = fs : jsj = 1;max(Bs;0) 2 Pi(Li)g. Let P0
be the identity, so thatP0(L0) = L0 is the set of all
images such that all pixels are illuminated. The num-
ber of possibleshadowing configurationsis the num-
ber of orthants inIRn through which the illumination
subspaceL passes, which in turn is the same as the
number of setsPi(Li).

Proposition 1. The number of shadowing configu-
rations is at mostm(m� 1) + 2, wherem � n is the
number of distinct surface normals.

Proof: Each of then pixels in the image has a cor-
responding great circle on the illumination sphere, but
only m of the great circles are distinct. The collec-
tion of m distinct great circles carves up the surface
of the illumination sphere into cells. Each cell on the
illumination sphere corresponds to a particular set of
imagesPi(Li). Thus, the problem of determining the
number of shadowing configurations is the same as the
problem of determining the number of cells on the il-
lumination sphere. If every vertex on the illumination
sphere is formed by the intersection of only two of the
m distinct great circles (i.e., if no more than two sur-
face normals are coplanar), then it can be shown by
induction that the illumination sphere is divided into
m(m� 1)+ 2 cells. If a vertex is formed by the inter-
section of three or more great circles, there are fewer
cells.

Thus, the setU of images of a convex Lambertian
surface created by varying the direction and strength
of a singlepoint light source at infinity is given by the
union of at mostn(n� 1) + 2 convex cones, i.e.,

U = fx j x = max(Bs;0);8s 2 IR3g

=

n(n�1)+1[
i=0

Pi(Li): (2)

From this set, we can construct the setC of all pos-
sible images of a convex Lambertian surface created
by varying the direction and strength of anarbitrary
numberof point light sources at infinity,

C=fx : x =

kX
i=1

max(Bsi;0);8si 2 IR3
;8k 2 ZZ+g

whereZZ+ is the set of positive integers.

Proposition 2. The set of imagesC is a convex cone
in IRn.

Proof: The proof thatC is a cone follows trivially
from the definition ofC. To prove thatC is convex, we
appeal to a proposition for convex cones which states
that a coneC is convex iffx1 + x2 2 C for any two
pointsx1;x2 2 C [6]. So the proof thatC is convex
also follows trivially from the above definition ofC.
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We callC the illumination cone. Every object has
its own illumination cone. Note that each point in the
cone is an image of the object under a particular light-
ing configuration, and the entire cone is the set of im-
ages of the object under all possible configurations of
point light sources at infinity.

Proposition 3. The illumination coneC of a con-
vex Lambertian surface can be determined from as few
as three images, each taken under a different, but un-
known light source direction.

Proof: The illumination coneC is completely de-
termined by the illumination subspaceL. If the matrix
of surface normals scaled by albedoB were known,
then this would determineL uniquely, asL = fx j
x = Bs;8s 2 IR3g. Yet, from images produced by
differing, but unknown light source directions we can
not determineB. To see this note that for any arbitrary
invertible3� 3 linear transformationA 2 GL(3),

Bs = (BA)(A�1s) = B
�
s
�
:

In other words, the same image is produced when
the albedo and surface normals are transformed byA,
while the light source is transformed byA�1. There-
fore, without knowledge of the light source directions,
we can only recoverB� whereB� = BA, see [8, 13].
NonethelessB� is sufficient for determining the sub-
spaceL: it is easy to show thatL = fx j x =

B
�
s;8s 2 IR3g = fx j x = Bs;8s 2 IR3g, see

[28].
Thus, for a convex object with Lambertian re-

flectance, we can determine its appearance under ar-
bitrary illumination from as few as three images of the
object – knowledge of the light source strength or di-
rection isnot needed, see also [28]. To determine the
illumination coneC, we simply need to determine the
illumination subspaceL. In turn, we can choose any
three images from the setL0, each taken under a dif-
ferent lighting direction, as its basis vectors. Naturally,
if more images are available, they can be combined to
find the best rank three approximation toL using sin-
gular value decomposition (SVD).

We should point out that for many convex surfaces
the cone can be constructed from as few as three im-
ages; however, this is not always possible. If the object
has surface normals covering the Gauss sphere, then
there is only one light source direction – the viewing
direction – such that the entire visible surface is illu-

minated. For any other light source direction, some
portion of the surface is shadowed. To determineL
each point on the surface of the object must be illumi-
nated in at least three images; for this to be true over
the entire visible surface, as many as five images may
be required. See [15] for an algorithm for determining
L from images with shadowed pixels.

What may not be immediately obvious is that
any point within the coneC (including the boundary
points) can be found as a convex combination of the
rays (images) produced by light source directions ly-
ing at them(m � 1) intersections of the great circles.
Furthermore, because the cone is constructed from a
finite number of extreme rays (images), the cone is
polyhedral.

These propositions and observations suggest the
following algorithm for constructing the illumination
cone from three or more images:

Illumination Subspace Method: Gather images
of the object under varying illumination without
shadowing and use these images to estimate the
three-dimensional illumination subspaceL. After
normalizing the images to be of unit length, singu-
lar value decomposition (SVD) can be used to es-
timate the best orthogonal basis in a least squares
sense. From the illumination subspaceL, the ex-
treme rays defining the illumination coneC are
then computed. Recall that an extreme ray is an
image created by a light source direction lying at
the intersection of two or more great circles. If
there arem independent surface normals, there
can be as many asm(m � 1) extreme rays (im-
ages). Letbi andbj be rows ofB with i 6= j, the
extreme rays are given by

xij = max(Bsij ;0)

where

sij = bi � bj :

In Section 2.4, we use this method to experiment with
images of real objects; we use a small number of im-
ages to build the illumination subspaceL and then pro-
duce sample images from the illumination coneC. To
reduce space and computational requirements for ap-
plications using the cone, the images can be projected
down to a low dimensional subspace; any image in
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the projected cone can be found as convex combina-
tions of the projected extreme rays. Note however,
that some of the projected extreme rays are redundant
since an extreme ray may project to the interior of the
projected cone. As will be seen in the experiments of
Section 3.4, the illumination cones of real objects do
lie near a low dimensional subspace; thus dimension-
ality reduction by linear projection may be justified.

2.2. A Two-Dimensional Example

To illustrate the relationship between an object and its
illumination cone, consider the simplified 2-D exam-
ple in Fig. 3. An object composed of three facets is
shown in Fig. 3.a. For faceti, the product of the albedo
and surface normal is given bybi 2 IR2. In this 2-D
world, the direction of a light source at infinity can be
represented as a point on a circle.

Now, consider a camera observing the three facets
from above such that the each facet projects to one
pixel yielding an imagex = (x1; x2; x3)

t 2 IR3. L is
then a 2-D linear subspace ofIR3, and the set of im-
ages from a single light source such that all pixels are
illuminatedL0 2 L is the 2-D convex cone shown in
Figure 3.b. The left edge ofL0 wherex3 = 0 corre-
sponds to the light source direction where Facet 3 just
goes into shadow. Now, for a single light source, the
set of images is formed by projectingL onto the pos-
itive orthant as shown in Figure 3.c. Note for exam-
ple, that the 2-D coneP1(L1) corresponds to the set of
images in which Facets 1 and 2 are illuminated while
Facet 3 is in shadow, and the 1-D rayP3(L3) corre-
sponds to the set of image with Facet 1 illuminated
and Facets 2 and 3 shadowed. The union[ i=6

i=0Pi(Li)

defines the walls of the illumination coneC, and the
entire cone is formed by taking convex combinations
of images on the walls.

As seen in Figure 3.d, the set of light source di-
rections, represented here by a circle, can be parti-
tioned into regionsSi such that all images produced
by light sources within the region have the same shad-
owing configurations. That is,Si = fs : jsj =

1;max(Bs;0) 2 Pi(Li)g. The corresponding par-
titioning of light source directions is shown in Fig-
ure 3.a.
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Fig. 3. A 2-D Example: a. A surface with three facets is observed
from above and produces an image with pixelsx1; x2 andx3. b.
The linear subspaceL and its intersection with the positive quadrant
L0. c. The “walls” of the conePi(Li) corresponding to images
formed by a single light source. The illumination coneC is formed
by all convex combinations of images lying on the walls. d. The
geometry of facets leads to a partitioning of the illumination circle.

2.3. Illumination Cones for Arbitrary Objects

In the previous subsection, we assumed that the ob-
jects were convex in shape and had Lambertian re-
flectance functions. Our central result was that the set
of images of the object under all possible illumination
conditions formed a convex cone in the image space
and that this illumination cone can be constructed from
as few as three images. Yet, most objects are noncon-
vex in shape and have reflectance functions which can
be better approximated by more sophisticated physi-
cal [24, 29, 30] and phenomenological [17] models.
The question again arises: What can we say about the
set of images of an object with a nonconvex shape and
a non-Lambertian reflectance function?

Nothing in the proof of Proposition 2 required as-
sumptions about the shape of the object, the nature of
the light sources, or the reflectance function for the ob-
ject’s surface. Consequently, we can state a more gen-
eral proposition about the set of images of an object
under varying illumination:
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Proposition 4. The set of n-pixel images of any ob-
ject, seen under all possible lighting conditions, is a
convex cone in IRn.

Therefore, even for an arbitrary object (i.e., an ob-
ject that does not have a convex shape or a Lambertian
reflectance function), the set of images under all pos-
sible lighting conditions still forms convex cone in the
image space. This result is in some sense trivial, aris-
ing from the superposition property of illumination:
the image of an object produced by two light sources
is simply the addition of the two images produced by
the sources individually.

It is doubtful that the illumination cone for such ob-
jects can be constructed from as few as three images.
This is not due to the nonconvexity of objects and the
shadows they cast. The structure of objects with Lam-
bertian reflectance, but nonconvex shapes, can be re-
covered up to a “generalized bas-relief” transforma-
tion from as few as three images [4]. From this, it is
possible to determine the cast shadows exactly. Rather
the difficulty is due to the fact that the reflectance func-
tion is unknown. To determine the reflectance func-
tion exactly could take an infinite number of images.
However, the Illumination Subspace Method devel-
oped in Section 2.1 can be used to approximate the
cone, as will be seen in the empirical investigation of
Section 2.4. An alternative method for approximating
the cone is presented below:

Sampling Method: Illuminate the object by a se-
ries of light source directions which evenly sam-
ple the illumination sphere. The resulting set of
images are then used as the extreme rays of the
approximate cone.

Note that this approximate cone is a subset of the true
cone and so any image contained within the approx-
imate cone is a valid image. The Sampling Method
has its origins in the linear subspace method proposed
by Hallinan [12]; yet, it differs in that the illumina-
tion cone restricts the images to be convex – not linear
– combinations of the extreme rays. This method is
a natural way of extending the appearance manifold
method of Murase and Nayar to account for multiple
light sources and shadowing [21].

Original Images

Basis Images
Fig. 4. Illumination Subspace Method: The top half of the figure
shows all six of the original images used to construct the illumina-
tion subspaceL of the face. The bottom half of the figure shows
three basis images, lying inL0, that span the illumination subspace
L for the face.

2.4. Empirical Investigation: Building Illumination
Cones

To demonstrate the power of these concepts, we have
used the Illumination Subspace Method to construct
the illumination cone for two different scenes: a hu-
man face and a desktop still life. To construct the
cone for the human face, we used images from the
Harvard Face Database [12], a collection of images of
faces seen under a range of lighting directions. For
the purpose of this demonstration, we used the im-
ages of one person, taking six images with little shad-
owing and using singular value decomposition (SVD)
to construct a 3-D basis for the illumination subspace
L. Note that this 3D linear subspace differs from the
affine subspace constructed using the Karhunen-Loeve
transform: the mean image is not subtracted before
determining the basis vectors as in the Eigenpicture
methods [18, 31].
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1 Light 2 Lights 3 Lights

Fig. 5. Random Samples from the Illumination Cone of a Face:
Each of the three columns respectively comprises sample images
from the illumination cone with one, two and three light sources.

The illumination subspace was then used to con-
struct the illumination coneC. We generated novel
images of the face as if illuminated by one, two, or
three point light sources by randomly sampling the il-
lumination cone. Rather than constructing an explicit
representation of the half-spaces bounding the illu-
mination cone, we sampledL, determined the corre-
sponding orthant, and appropriately projected the im-

Original Images

Basis Images
Fig. 6. Illumination Subspace Method: The top half of the fig-
ure shows three of the original nine images used to construct the
illumination subspaceL of the still life. The bottom half of the fig-
ure shows three basis images, lying inL0, that span the illumination
subspaceL for the still life.

age onto the illumination cone. Images constructed
under multiple light sources simply correspond to the
superposition of the images generated by each of the
light sources.

The top half of Fig. 4 shows all six low resolution
images of a person’s face that were used to construct
the basis of the linear subspaceL. The bottom half
of Fig. 4 shows three basis images that spanL. The
three columns of Fig. 5 respectively comprise sample
images from the illumination cone for the face with
one, two, or three light sources.

There are number of points to note about this exper-
iment. There was almost no shadowing in the training
images yet there are strong attached shadows in many
of the sample images. They are particularly distinct in
the images generated with a single light source. Notice
for example the sharp shadow across the ridge of the
nose in Column 1, Row 2 or the shadowing in Column
1, Row 4 where the light source is coming from behind
the head. Notice also the depression under the cheek-
bones in Column 2, Row 5, and the cleft in the chin
revealed in Column 1, Row 3. For the image in Col-
umn 3, Row 2, two of the light sources are on opposite
sides while the third one is coming from below; no-
tice that both ears and the bottom of the chin and nose
are brightly illuminated while that rest of the face is
darker.

To construct the cone for the desktop still life, we
used our own collection of nine images with little
shadowing. The top half of Fig. 6 shows three of these
images. The bottom half of Fig. 6 shows the three ba-
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1 Light 2 Lights 3 Lights

Fig. 7. Random Samples from the Illumination Cone of a
Desktop Still Life: Each of the three columns respectively com-
prises sample images from the illumination cone with one, two, and
three light sources.

sis images that spanL. The three columns of Fig. 7
respectively comprise sample images from the illumi-
nation cone for the desktop still life with one, two, or
three light sources.

The variability in illumination in these images is so
extreme that the edge maps for these images would
differ drastically. Notice in the image in Column 1,
Row 4 that the shadow line on the bottle is distinct
and that the left sides of the phone, duck, and bottle
are brightly illuminated. Throughout the scene, notice
that those points having comparable surface normals
seem to be similarly illuminated. Furthermore, notice
that all of the nearly horizontal surfaces in the bottom
two images of the first column are in shadow since the
light is coming from below. In the image with two
light sources shown at the bottom of Column 2, the
sources are located on opposite sides and behind the
objects. This leads to a shadow line in the center of
the bottle. The head of the wood duck shows a similar
shadowing where the front and back are illuminated,
but not the side.

3. Dimension and Shape of the Illumination Cone

In this section, we investigate the dimension of the il-
lumination cone, and show that it is equal to the num-
ber of distinct surface normals. However, we conjec-
ture that the shape of the cone is flat, with much of
its volume concentrated near a low-dimensional sub-
space, and present empirical evidence to support this
conjecture. Finally, we show that the cones of two ob-
jects with the same geometry, but with separate albedo
patterns, differ by a diagonal linear transformation.

3.1. The Dimension of the Illumination Cone

Given that the set of images of an object under vari-
ation in illumination is a convex cone, it is natural to
ask: What is the dimension of the cone inIRn? By this
we mean, what is the span of the vectors in the illumi-
nation coneC? Why do we want to know the answer
to this question? Because the complexity of the cone,
may dictate the nature of the recognition algorithm.
For example, if the illumination cones are 1-D, i.e.,
rays in the positive orthant ofIRn, then a recognition
scheme based on normalized correlation could handle
all of the variation due to illumination. However, in
general the cones are not one dimensional unless the
object is planar. To this end, we offer the following
proposition.

Proposition 5. The dimension of the illumination
cone C is equal to the number of distinct surface nor-
mals.

Proof: As for the proof of Proposition 1, we again
represent each light source direction by a point on
the surface of the illumination sphere. Each cell on
the illumination sphere corresponds to the light source
directions which produce a particular set of images
Pi(Li). For every image in a setPi(Li) certain pix-
els always equal zero, i.e., always in shadow. There
exists a cellS0 on the illumination sphere correspond-
ing to the light source directions which produceL0,
the set of images in which all pixels are always illu-
minated. There exists a cellSd corresponding to the
light source directions which produce a set of images
in which all pixels are always in shadow. Choose any
point sb 2 S0. The pointsd = �sb is antipodal tosb
and lies withinSd. Draw any half-meridian connect-
ing sb andsd. Starting atsb, follow the path of the
half-meridian; it crossesm distinct great circles, and
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passes throughm different cells before enteringSd.
Note the path of the half-meridian corresponds to a
particular path of light source directions, starting from
a light source direction producing an image in which
all pixels are illuminated and ending at a light source
direction producing an image in which all pixels are in
shadow. Each time the half-meridian crosses a great
circle, the pixel corresponding to the great circle be-
comes shadowed.

Take an image produced from any light source di-
rection within the interior of each cell through which
the meridian passes, includingS0, but excludingSd.
Arrange each of thesem images as column vectors
in an n � m matrix M . By elementary row opera-
tions, the matrixM can be converted to its echelon
form M

�, and it is trivial to show thatM � has ex-
actlym non-zero rows. Thus, the rank ofM ism, and
the dimension ofC is at leastm. Since there are only
m distinct surface normals, the dimension ofC can-
not exceedm. Thus, the dimension ofC equalsm.

Note that for images withn pixels, this proposition
indicates that the dimension of the illumination cone is
one for a planar object, is roughly

p
n for a cylindrical

object, and isn for a spherical object. But if the cone
spansIRn, what fraction of the positive orthant does
it occupy? In Section 3.3, we investigate this ques-
tion, conjecturing that the illumination cones for most
objects occupy little volume in the image space.

3.2. The Connection between Albedo and Cone
Shape

If two objects are similar in geometry, but differ in
their respective albedo patterns, then there is a sim-
ple linear relationship between their corresponding il-
lumination cones. Here, we consider two Lambertian
objects that have the same underlying geometry, but
have differing albedo patterns (e.g., a Coke can and a
Pepsi can). In this case, the product of albedo and sur-
face normals for the two objects can be expressed as
B1 = R1N andB2 = R2N whereN is ann � 3

matrix of surface normals andRi is ann�n diagonal
matrix whose diagonal elements are positive and rep-
resent the albedo. The following proposition relates
the illumination cones of the two objects.

Proposition 6. If C1 is the illumination cone for an
object defined by B1 = R1N and C2 is the illumina-

tion cone for an object defined by B2 = R2N , then

C1 = fR1R
�1
2 x : x 2 C2g and

C2 = fR2R
�1
1 x : x 2 C1g:

Proof: For every light source directions, the corre-
sponding images are given byx1 = max(B1s;0) =

R1max(Ns;0) and x2 = max(B2s;0) =

R2max(Ns;0). SinceR1 andR2 are diagonal with
positive diagonal elements, they are invertible. There-
fore,x1 = R1R

�1
2 x2 andx2 = R2R

�1
1 x1.

Thus, the cones for two objects with identical geom-
etry but differing albedo patterns differ by a diagonal
linear transformation. This fact can be applied when
computing cones for objects observed by color cam-
eras as noted in Section 4. Note that this proposition
also holds when the objects are nonconvex; since the
partitioning of the illumination sphere is determined
by the objects’ surface geometry, the set of shadowing
configurations is identical for two objects with same
shape. The intensities of the illuminated pixels are re-
lated by the transformations given in the proposition.

3.3. Shape of the Illumination Cone

While we have shown that an illumination cone is a
convex, polyhedral cone that can spann dimensions if
there aren distinct surface normals, we have not said
how big it is in practice. Note that having a cone span
n dimensions does not mean that it coversIRn, since
a convex cone is defined only by convex combinations
of its extreme rays. It is conceivable that an illumina-
tion cone could completely cover the positive orthant
of IRn. However, the existence of an object geometry
that would produce this is unlikely. For such an object,
it must be possible to choosen light source direction
such that each of then facets are illuminated indepen-
dently.

On the other hand, if the illumination cones for ob-
jects are small and well separated, then recognition
should be possible, even under extreme lighting condi-
tions. We believe that the latter is true – that the cone
has almost no volume in the image space. We offer the
following conjecture:

Conjecture 1. The shape of the cone is “fl at,”
i.e., most of its volume is concentrated near a low-
dimensional subspace.
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While we have yet to prove this conjecture, the em-
pirical investigations of [7, 12] and the one in the fol-
lowing section seem to support it.

3.4. Empirical Investigation of the Shape of the Illu-
mination Cones

To investigate Proposition 1 and Conjecture 1, we have
gathered several images, taken under varying lighting
conditions, of two objects: the corner of a cardboard
box and a Wilson tennis ball. For both objects, we
computed the illumination subspace using SVD from
a set of images. Using the estimated illumination sub-
spaces, we performed two experiments.

In the first experiment, we tried to confirm that the
illumination spheres for both objects would appear as
we would expect. For both the box and the tennis ball,
we drew the great circles associated with each pixel
on the illumination sphere, see Fig. 8. From Propo-
sition 5, we would expect the illumination cone pro-
duced by the corner of the box to be three dimensional
since the corner has only three faces. The illumina-
tion sphere should be partitioned into eight regions by
three great circles, each meeting the other two orthog-
onally. This structure is evident in the figure. Yet,
due to both image noise and the fact that the surface
is not truly Lambertian, there is some small deviation
of the great circles. Furthermore, the few pixels from
the edge and corner of the box produce a few stray
great circles. In contrast, the visible surface normals
of the tennis ball should nearly cover half of the Gauss
sphere and, therefore, the great circles should nearly
cover the illumination sphere. Again, this structure is
evident in the figure.

In the second experiment, we plotted the eigenval-
ues of the matrix of extreme rays for both the box and
the tennis ball. The point of this experiment was to
compare the size and “flatness” of both cones. As dis-
cussed in Section 2.1, an extreme rayxij is an im-
age created by a light source directions ij lying at the
intersection of two or more great circles on the illu-
mination sphere. The matrix of extreme rays is sim-
ply the matrix whose columns are the vectorized im-
agesxij=jxij j. We then performed SVD on the matrix
of extreme rays for the box corner and the matrix of
extreme rays for the tennis ball. The corresponding
eigenvalues are plotted in decreasing order in Fig. 9.

From this figure we make the following observa-
tions. First, in the plot of the box corner there is a

Fig. 8. Examples of Illumination Spheres: On the left, the figure
shows an image of the corner of a cardboard box and its correspond-
ing illumination sphere. Note that the illumination sphere is, for the
most part, partitioned into eight regions by three great circles, each
meeting the other two orthogonally. On the right, the figure shows
an image of a Wilson tennis ball and its corresponding illumina-
tion sphere. Note that the great circles nearly cover the illumination
sphere.

sharp drop-off after the third eigenvalue, indicating
that most of the illumination cone is concentrated near
a 3-D subspace of the image space. Second, the eigen-
values for the tennis ball do not drop-off as quickly
as those for the box, indicating that the illumination
cone for the tennis ball is larger than that for the box.
And, third, the eigenvalues for both the box corner
and the tennis ball diminish by at least two orders of
magnitude within the first fifteen eigenvalues. Thus,
in agreement with the above conjecture, the illumina-
tion cones appear to be concentrated near a low dimen-
sional subspace.

We should point out that [7, 12] performed a related
experiment on images created byphysically moving
the light source to evenly sample the illumination
sphere. They too found that the set of images of an ob-
ject under variable illumination lies near a low dimen-
sional subspace. Our results using synthesized images
from the cone seem to complement their findings.

4. Color

Until now, we have neglected the spectral distribution
of the light sources, the color of the surface, and the
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Fig. 9. Eigenvalues for the Matrix of Extreme Rays: The figure
shows a plot in decreasing order of the eigenvalues of the matrix of
extreme rays for the illumination cone of the corner of a box and for
the illumination cone of a tennis ball.

spectral response of the camera; here we extend the
results of Section 2 to multi-spectral images.

Let � denote the wavelength of light. Let� i(�) de-
note the response for all elements of theith color chan-
nel. LetR(�) be a diagonal matrix whose elements are
the spectral reflectance functions of the facets, where
the rows ofN 2 IRn�3 are the surface normals of the
facets. Finally, let~s(�) andŝ be the power spectrum
and direction of the light source, respectively. Then,
ignoring attached shadows and the associatedmax op-
eration, then-pixel imagexi produced by color chan-
neli of a convex Lambertian surface from a single col-
ored light is [14, 16]

xi =

Z
�i(�)(R(�)N)(~s(�)̂s)d�: (3)

It is difficult to make limiting statements about the
set of possible images of a colored object when�(�),

R(�) and~s(�) are arbitrary. For example, if we con-
sider a particular object with a spectral reflectance
functionR(�) and surface normalsN , then without
constraining assumptions on�i(�) and~s(�), any im-
agexi is obtainable. Consequently, we will consider
two specific cases: cameras with narrow-band spec-
tral response and light sources with identical spectral
distributions.

4.1. Narrow-Band Cameras

Following [23], if the sensing elements in each color
channel have narrow-band spectral response or can be
made to appear narrow band [9], then� i(�) can be
approximated by a Dirac delta function about some
wavelength�i, and Eq. 3 can be rewritten as

xi = �(�i)(R(�i)N)(~s(�i )̂s)

= �i(RiN)(~siŝ):
(4)

Note that�i; Ri andN are constants for a given sur-
face and camera whereas~si and ŝ depend on proper-
ties of the light source. Eq. 4 can be expressed using
the notation of Eq. 1 whereB = �iRiN ands = ~siŝ.
The diagonal elements of�iRi are the effective albedo
of the facets for color channeli. For c narrow-band
color channels, the color imagex = [xt

1 jxt2 j � � � jxtc]t
formed by stacking up thec images for each channel
can be considered a point inIRc n. Under a single light
source,x is a function of̂s and~s1 � � � ~sc. Taken over
all light source directions and spectral distributions,
the set of images from a single light source without
shadowing is ac + 2 dimensional manifold inIRc n.
It is easy to show that this manifold is embedded in a
3c-dimensional linear subspace ofIRc n, and that any
point (image) in the intersection of this linear subspace
with the positive orthant ofIRc n can be achieved by
three colored light sources.

A basis for this3c-dimensional subspace can be
constructed from three color images without shadow-
ing. This is equivalent to independently constructing
c three-dimensional linear subspaces inIRn, one for
each color channel. Note that�iRiN spans subspace
i. When attached shadows are considered, an illumi-
nation cone can be constructed inIRn for each color
channel independently. The cones for each color chan-
nel are closely related since they arise from the same
surface; effectively the albedo matrixRi may be dif-
ferent for each color channel, but the surface normals
N are the same. As demonstrated in Section 3.2, the
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cones for two surfaces with same geometry, but dif-
ferent albedo patterns differ by a diagonal linear trans-
formation. Now the set of all multi-spectral images
of a convex Lambertian surface is a convex polyhedral
cone inIRc n given by the Cartesian product of thec
individual cones. Following Proposition 5, this color
cone spans at mostcm dimensions wherem is the
number of distinct surface normals.

4.2. Light Sources with Identical Spectra

Consider another imaging situation in which a color
camera (c channels, not necessarily narrow-band) ob-
serves a scene where the number and location of the
light sources are unknown, but the power spectral dis-
tributions of all light sources are identical (e.g., incan-
descent bulbs). Equation 3 can then be rewritten as

xi =

�Z
�i(�)~s(�)R(�)d�

�
N ŝ: (5)

In this case, the integral is independent of the
light source direction and scales with its intensity.
If we define the intensity of the light source to
be ~s =

R
~s(�)d�, then s = ~sŝ and Ri =

1
~s

R
�i(�)~s(�)R(�)d�. Equation 5 can then be ex-

pressed as

xi = RiNs:

For c color channels, the color imagex 2 IRc n is
given by

x = [R1 jR2 j � � � jRc]
t
Ns:

Consequently, the set of images of the surface with-
out shadowing is a three-dimensional linear subspace
of IRc n sinceRi andN are constants. Following
Section 2, the set of all images with shadowing is a
convex polyhedral cone that spansm dimensions of
IRc n. Thus, when the light sources have identical
power spectra (even if the camera is not narrow-band),
the set of all images is significantly smaller than con-
sidered above since the color measured at each pixel is
independent of the light source direction.

5. Discussion

In this paper, we have shown that the set of images of
a convex object with a Lambertian reflectance func-

tion, under all possible lighting conditions at infin-
ity, is a convex, polyhedral cone. Furthermore, we
have shown that this cone can be learned from three
properly chosen images and that the dimension of the
cone equals the number of distinct surface normals.
We have shown that for objects with an arbitrary re-
flectance function and a nonconvex shape, the set of
images is still a convex cone and that these results can
be easily extended to color images.

Nevertheless, there remain a number of extensions
and open issues which we discuss below. While we
have focused this paper solely oncharacterizing the
set of images under varying illumination, we believe
the ideas presented within have natural applications to
recognition algorithms.

5.1. Interreflection

A surface is not just illuminated by the light sources
but also through interreflections from points on the
surface itself [1, 11]. For a Lambertian surface, the
image with interreflectionx0 is related to the image
that would be formed without interreflectionx by

x
0 = (I �RK)�1x

whereI is the identity matrix,R is a diagonal matrix
whose diagonal elements denote the albedo of facet
i, andK is known as the interreflection kernel [22].
When there is no shadowing, all images lie in a 3-D
linear space that would be generated from Eq. 1 by
a pseudo-surface whose normals and albedoB

0 are
given byB 0 = (I � RK)�1B [22, 23]. From Propo-
sition 4, the set of all possible images is still a cone.
While B0 can be learned from only three images, the
set of shadowing configurations and the partitioning of
the illumination sphere is generated fromB, notB 0.
So, it remains an open question how the cone can be
constructed from only three images.

5.2. Effects of Change in Pose

All of the previous analysis in the paper has dealt
solely with variation in illumination. Yet, a change
in the object’s pose creates a change in the perceived
image. If an object undergoes a rotation or transla-
tion, how does the illumination cone deform? The il-
lumination cone of the object in the new pose is also
convex, but almost certainly different from the illumi-
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nation cone of the object in the old pose. Which raises
the question: Is there a simple transformation, obtain-
able from a small number of images of the object seen
from different views, which when applied to the illu-
mination cone characterizes these changes? Alterna-
tively, is it practical to simply sample the pose space
constructing an illumination cone for each pose? Na-
yar and Murase have extended their appearance mani-
fold representation to model illumination variation for
each pose as a 3-D linear subspace [23]. However,
their representation does not account for the compli-
cations produced by attached shadows.

5.3. Object Recognition

Ultimately, we intend to apply the illumination cone
concept to recognition. In earlier face recognition
work, we implemented a classification method based
on the minimum distance of an image to a three dimen-
sional linear subspace (i.e.,L) that was constructed for
each person. Experimentally, recognition rates were
perfect when there was only moderate variation in il-
lumination with minor shadowing [2]. While the dis-
tance to illumination subspace algorithm performed
impressively, the experiments also indicated that its
performance deteriorates as the test images move fur-
ther and further away from the illumination subspace
L. We believe that nearly perfect recognition rates
could be achieved under extreme variation in illu-
mination, by measuring distance to the illumination
cone, rather than distance to the illumination subspace.
Measuring the squared distance to a convex cone can
be posed as a non-negative least-squares optimization
problem.

It is important to stress that the illumination cones
are convex. If they are non-intersecting, then the cones
are linearly separable. That is, they can be separated
by a n � 1 dimensional hyperplane inIRn passing
through the origin. Furthermore since convex sets re-
main convex under linear projection, then for any pro-
jection direction lying in the separating hyperplane,
the projected convex sets will also be linearly sepa-
rable. Ford different objects represented byd lin-
early separable convex cones, there always exists a
linear projection of the image space to ad � 1 di-
mensional space such that all of the projected sets are
again linearly separable. So an alternative to classifi-
cation based on measuring distance to the cones inIRn

is to find a much lower dimensional space in which to

do classification. In our Fisherface method for rec-
ognizing faces under variable illumination and facial
expression, projection directions were chosen to max-
imize separability of the object classes [2]; a similar
approach can be taken here.
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Notes

1. By orthant we mean the high-dimensional analogue to quadrant,
i.e., the setfx j x 2 IRn; with certain components ofx � 0

and the remaining components ofx < 0g. By non-negative
orthant we mean the setfx j x 2 IRn; with all components of
x � 0g.
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